This application addresses latent chronic infection caused by the protozoan parasite Toxoplasma gondii. In the host, Toxoplasma converts from a proliferative stage (tachyzoite) that causes acute infection to a latent cyst (bradyzoite) stage tht establishes a lifelong chronic infection. Chronic toxoplasmosis is of great clinical importance because the latent infection can reactivate into life-threatening acute toxoplasmosis, most notably in AIDS and heart transplant patients. This application addresses the significant need to develop therapies that can prevent latent cysts from reactivating infection. Our previous findings established a role for eIF2? (eukaryotic initiation factor-2) phosphorylation in microbial latency, prompting us to test if inhibitors of eIF2? dephosphorylation could interfere with reactivation of latent Toxoplasma infection in vitro. We found that one such drug, guanabenz (GA), is a potent anti-parasitic agent that also inhibits the reactivation of bradyzoite cysts in vitro. Importantly,GA is a well-tolerated FDA-approved drug that crosses the blood-brain barrier, properties that make it an outstanding candidate for rapid advancement as an innovative new treatment for chronic toxoplasmosis. In the R21 phase of this application, we will test the utility of GA in a well-characterized mouse model of chronic infection, and conduct a screen for GA-resistant parasites in order to assess the likelihood and mechanism of drug resistance. These mutants will facilitate studies to define how this drug inhibits parasite proliferation and the reactivatio of infection. Milestones for advancement to the R33 phase include either a demonstration of GA activity against chronic Toxoplasma in vivo or the generation of GA-resistant mutants. If one or both of these milestones are achieved, the R33 phase of this study will elucidate the molecular mechanism underlying the ability of GA to control parasite replication and latent infection using complementary biochemical and genetic approaches.

Public Health Relevance

Toxoplasma gondii is a parasite that causes life-threatening disease in immunocompromised patients due to its ability to remain in the host for life as a latent cyst form. We have identified an already FDA-approved drug that blocks reactivation of Toxoplasma infection in vitro. Our proposal aims to test this drug in the mouse model of Toxoplasma infection and understand the molecular mechanisms by which this drug can prevent reactivation of this latent infection, which has the promise of rapidly advancing a new and innovative prophylactic treatment for toxoplasmosis and possibly other latent parasitic infections.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Exploratory/Developmental Grants (R21)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-JKB-M (J6))
Program Officer
Rogers, Martin J
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Indiana University-Purdue University at Indianapolis
Schools of Medicine
United States
Zip Code
Herman, Jonathan D; Pepper, Lauren R; Cortese, Joseph F et al. (2015) The cytoplasmic prolyl-tRNA synthetase of the malaria parasite is a dual-stage target of febrifugine and its analogs. Sci Transl Med 7:288ra77
Benmerzouga, Imaan; Checkley, Lisa A; Ferdig, Michael T et al. (2015) Guanabenz repurposed as an antiparasitic with activity against acute and latent toxoplasmosis. Antimicrob Agents Chemother 59:6939-45
Liu, Min; Miao, Jun; Liu, Tingkai et al. (2014) Characterization of TgPuf1, a member of the Puf family RNA-binding proteins from Toxoplasma gondii. Parasit Vectors 7:141