Francisella tularensis is the causative agent of respiratory tularemia, a debilitating disease of humans. This bacterial pathogen has been listed as Category A Select Agent owing to its extreme virulence and the ease of its dissemination via aerosol route. To date there is no effective immune therapy or vaccine licensed for prevention of this disease. Although clinical and experimental studies have shown that Th-1 type of host immune responses are protective, bacterial antigens driving these responses are not well defined. Identification of such antigens will aide in formulating effective prevention strategies fr this debilitating disease. This encompasses the goal of the proposed studies. For this, we aim to utilize a novel approach of comparing the immunodominant protein profile of Francisella using sera from mice inoculated with a mutant Francisella strain that is attenuated for causing the infection but does not protect the mice from a lethal challenge with the virulent wild-type organisms and sera from mice inoculated with mutants that not only are attenuated but also protect the mice from lethal challenge. Based on our preliminary studies we believe that this unique approach will identify Francisella proteins associated only with the protective response which can then be utilized as vaccine candidates. In this line, we are armed with a collection of attenuated/non-protective and attenuated/protective mutants of Francisella which will be used to inoculate the mice and the sera collected from these mice will be used to probe total proteins of Francisella followed by sequencing and identification of immunodominant proteins reactive only to the sera from mice inoculated with protective mutants (Aim 1). These proteins will then be produced as recombinant fusion proteins and tested for their protective efficacy against pulmonary infection with virulent Francisella strains (Aim 2). We believe that these studies will uncover Francisella proteins capable of generating protective anti-Francisella immunity thus serving as candidates for a subunit vaccine against this pathogen. Additionally, this novel strategy of comparative immunoproteomics may serve as a platform to identify vaccine candidates for other bacterial pathogens as well. The outcome of proposed studies is expected to take the Francisella subunit vaccine research a step further.

Public Health Relevance

Respiratory infections with Francisella tularensis cause a debilitating disease called tularemia, which can lead to a mortality rate of up to 60% if left untreated. Thus far there are no vaccines available to prevent this infection. We are proposing to utilize a novel comparative immunoproteomics approach to identify and evaluate the efficacy of specific Francisella proteins that can induce protection against pulmonary tularemia. These proteins can serve as candidates for developing immune therapies or subunit vaccine for this infection. Additionally, this unique approach may serve as a platform for identifying novel vaccine candidates for other bacterial pathogens as well.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Exploratory/Developmental Grants (R21)
Project #
5R21AI107457-02
Application #
8790425
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Mukhopadhyay, Suman
Project Start
2014-02-01
Project End
2017-01-31
Budget Start
2015-02-01
Budget End
2017-01-31
Support Year
2
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of North Dakota
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
102280781
City
Grand Forks
State
ND
Country
United States
Zip Code
58202
Jondle, Christopher N; Gupta, Kuldeep; Mishra, Bibhuti B et al. (2018) Klebsiella pneumoniae infection of murine neutrophils impairs their efferocytic clearance by modulating cell death machinery. PLoS Pathog 14:e1007338
Quenum Zangbede, Fredice O; Chauhan, Arun; Sharma, Jyotika et al. (2018) Galectin-3 in M2 Macrophages Plays a Protective Role in Resolution of Neuropathology in Brain Parasitic Infection by Regulating Neutrophil Turnover. J Neurosci 38:6737-6750
Chauhan, Arun; Sun, Yuyang; Sukumaran, Pramod et al. (2018) M1 Macrophage Polarization Is Dependent on TRPC1-Mediated Calcium Entry. iScience 8:85-102
Jondle, Christopher N; Sharma, Atul; Simonson, Tanner J et al. (2016) Macrophage Galactose-Type Lectin-1 Deficiency Is Associated with Increased Neutrophilia and Hyperinflammation in Gram-Negative Pneumonia. J Immunol 196:3088-96
Chauhan, Arun; Quenum, Fredice Z; Abbas, Ata et al. (2015) Epigenetic Modulation of Microglial Inflammatory Gene Loci in Helminth-Induced Immune Suppression: Implications for Immune Regulation in Neurocysticercosis. ASN Neuro 7:
Sun, Yuyang; Chauhan, Arun; Sukumaran, Pramod et al. (2014) Inhibition of store-operated calcium entry in microglia by helminth factors: implications for immune suppression in neurocysticercosis. J Neuroinflammation 11:210