The goal of this project is to address how the parasexual cycle of the fungus Candida albicans influences cell fitness and pathogenesis. This work is part of a long-range goal to understand the role of parasexuality in C. albicans colonization and disease in the mammalian host. C. albicans is the primary cause of oropharyngeal candidiasis (OPC), a condition that continues to afflict HIV-infected patients even in the era of antiretroviral therapy. C. albicans is also a prevalent cause of life-threatening systemic infections, particularly in nosocomial and immunocompromised populations. A defining feature of C. albicans biology is its ability to colonize and infect many sites throughout the human body. This remarkable ability is dependent on genetic and epigenetic mechanisms that act to promote phenotypic plasticity. Strains undergo switching between alternative cell states, and these transitions are essential to C. albicans's lifestyle both as a commensal and as an opportunistic pathogen. Morphologic and phenotypic changes influence virulence, tissue specificity, interactions with immune cells, and entry into the parasexual cycle. It is therefore essential to understand the mechanisms promoting phenotypic variation, and the consequences of such variation for infection of the host. A major goal of this proposal is to define the abilit of the parasexual cycle to generate novel C. albicans strains with the potential to promote pathogenesis. The parasexual cycle involves phenotypic switching to a mating-competent state, cell fusion to generate tetraploid cells, and concerted chromosome loss to form recombinant diploid or aneuploid strains. Exciting preliminary experiments establish that parasexuality can generate strains with increased virulence as well as increased resistance to environmental stress. A systematic analysis of parasex progeny will now be performed to identify isolates with stress-resistant phenotypes including resistance to antifungal drugs, as well as isolates that exhibit increased virulence. Genotyping of these isolates will determine the chromosomal changes that underlie these adaptive events. In particular, it is expected that the presence of specific aneuploid chromosomes will be associated with particular C. albicans phenotypes. A second goal is to identify the in vivo niche(s) that promote parasexual reproduction. Our studies indicate that particular regions of the gastrointestinal tract may preferentially support phenotypi switching and parasexual reproduction. This possibility will be directly tested by the experiments outlined here, including quantification of each of the steps of the parasexual cycle in vivo. Together, completion of the proposed experiments will therefore determine where parasexual reproduction occurs in vivo, and the consequences of this program for generating recombinant strains with increased pathogenicity.

Public Health Relevance

Candida species are a prevalent cause of opportunistic fungal infections worldwide, and are also the fourth leading cause of nosocomial bloodstream infections in the US. These studies will address the plasticity of C. albicans genomes, and the role that parasexual reproduction plays in generating recombinant strains with increased pathogenicity.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Exploratory/Developmental Grants (R21)
Project #
5R21AI112363-02
Application #
8849368
Study Section
AIDS-associated Opportunistic Infections and Cancer Study Section (AOIC)
Program Officer
Duncan, Rory A
Project Start
2014-06-01
Project End
2017-05-31
Budget Start
2015-06-01
Budget End
2017-05-31
Support Year
2
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Brown University
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
001785542
City
Providence
State
RI
Country
United States
Zip Code
Ene, Iuliana V; Farrer, Rhys A; Hirakawa, Matthew P et al. (2018) Global analysis of mutations driving microevolution of a heterozygous diploid fungal pathogen. Proc Natl Acad Sci U S A 115:E8688-E8697
Hirakawa, Matthew P; Chyou, Darius E; Huang, Denis et al. (2017) Parasex Generates Phenotypic Diversity de Novo and Impacts Drug Resistance and Virulence in Candida albicans. Genetics 207:1195-1211
Mallick, Emily M; Bergeron, Audrey C; Jones Jr, Stephen K et al. (2016) Phenotypic Plasticity Regulates Candida albicans Interactions and Virulence in the Vertebrate Host. Front Microbiol 7:780
Sun, Yuan; Gadoury, Christine; Hirakawa, Matthew P et al. (2016) Deletion of a Yci1 Domain Protein of Candida albicans Allows Homothallic Mating in MTL Heterozygous Cells. MBio 7:e00465-16
Ene, Iuliana V; Lohse, Matthew B; Vladu, Adrian V et al. (2016) Phenotypic Profiling Reveals that Candida albicans Opaque Cells Represent a Metabolically Specialized Cell State Compared to Default White Cells. MBio 7:
Anderson, Matthew Z; Porman, Allison M; Wang, Na et al. (2016) A Multistate Toggle Switch Defines Fungal Cell Fates and Is Regulated by Synergistic Genetic Cues. PLoS Genet 12:e1006353
Anderson, Matthew Z; Bennett, Richard J (2016) Budding off: bringing functional genomics to Candida albicans. Brief Funct Genomics 15:85-94
Jones Jr, Stephen K; Clarke, Starlynn C; Craik, Charles S et al. (2015) Evolutionary Selection on Barrier Activity: Bar1 Is an Aspartyl Protease with Novel Substrate Specificity. MBio 6:e01604-15
Scaduto, Christine M; Bennett, Richard J (2015) Candida albicans the chameleon: transitions and interactions between multiple phenotypic states confer phenotypic plasticity. Curr Opin Microbiol 26:102-8
Hirakawa, Matthew P; Martinez, Diego A; Sakthikumar, Sharadha et al. (2015) Genetic and phenotypic intra-species variation in Candida albicans. Genome Res 25:413-25