Phenoloxidases take part in key insect physiological processes including pigmentation, cuticle tanning, wound healing, and defense responses. Some mosquito phenoloxidases generate active chemicals and eumelanin to kill and sequester malaria parasites. While reverse genetic analyses have revealed components of this enzyme system, important knowledge gaps still exist due to lack of biochemical analysis. In studies of the Manduca sexta prophenoloxidase (PPO) activation system, we accumulated wealthy knowledge on PPOs, PPO activating proteases, and their regulators. We cloned cDNAs of all nine Anopheles gambiae PPOs, expressed them as functional proteins in E. coli, crystallized three, and solved one PPO structure. Initial kinetic analysis revealed striking differences in substrate preference and catalytic efficiency. We validated the proteomic approach to semi-quantify PPOs and other proteins in the mosquito and detected PPOs in tissues using polyclonal antibodies. By injecting into female adults dsRNA encoding a conserved region in PPOs, we substantially reduced their mRNA and protein levels. Based on these advances, we propose to study the structures, functions, and expression of A. gambiae PPO1-9. Acquired knowledge and reagents will be useful for exploring how parasites evade or suppress the host immune mechanism in the future.

Public Health Relevance

Mosquitoes transmit pathogens that kill approximately half a million people each year. The transmission success is in part determined by the insect immune system. This project aims at elucidating structures, functions, and expression of prophenoloxidase-1 through 9 in a major vector species, which participate in melanotic encapsulation of parasites and nematodes. Multiple phenoloxidases with different expression profiles and biochemical properties generate reactive compounds to kill and entrap the pathogens and to perform other physiological functions. Acquired knowledge and mutated genes have potentials to be applied for disrupting human disease transmission in mosquitoes.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Exploratory/Developmental Grants (R21)
Project #
Application #
Study Section
Vector Biology Study Section (VB)
Program Officer
Costero, Adriana
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Oklahoma State University Stillwater
Other Basic Sciences
Schools of Earth Sciences/Natur
United States
Zip Code
He, Xuesong; Cao, Xiaolong; He, Yan et al. (2017) Hemolymph proteins of Anopheles gambiae larvae infected by Escherichia coli. Dev Comp Immunol 74:110-124
Cao, Xiaolong; Jiang, Haobo (2017) An analysis of 67 RNA-seq datasets from various tissues at different stages of a model insect, Manduca sexta. BMC Genomics 18:796
Schrag, Lynn G; Cao, Xiaolong; Herrera, Alvaro I et al. (2017) Solution Structure and Expression Profile of an Insect Cytokine: Manduca sexta Stress Response Peptide-2. Protein Pept Lett 24:3-11
Cao, Xiaolong; Gulati, Mansi; Jiang, Haobo (2017) Serine protease-related proteins in the malaria mosquito, Anopheles gambiae. Insect Biochem Mol Biol 88:48-62
He, Yan; Wang, Yang; Yang, Fan et al. (2017) Manduca sexta hemolymph protease-1, activated by an unconventional non-proteolytic mechanism, mediates immune responses. Insect Biochem Mol Biol 84:23-31
He, Yan; Wang, Yang; Zhao, Picheng et al. (2017) Serpin-9 and -13 regulate hemolymph proteases during immune responses of Manduca sexta. Insect Biochem Mol Biol 90:71-81
Wang, Yang; Jiang, Haobo (2017) Prophenoloxidase activation and antimicrobial peptide expression induced by the recombinant microbe binding protein of Manduca sexta. Insect Biochem Mol Biol 83:35-43
Hu, Yingxia; Wang, Yang; Deng, Junpeng et al. (2016) The structure of a prophenoloxidase (PPO) from Anopheles gambiae provides new insights into the mechanism of PPO activation. BMC Biol 14:2
Yang, Fan; Wang, Yang; He, Yan et al. (2016) In search of a function of Manduca sexta hemolymph protease-1 in the innate immune system. Insect Biochem Mol Biol 76:1-10
Zhang, Xiufeng; Zheng, Yun; Cao, Xiaolong et al. (2015) Identification and profiling of Manduca sexta microRNAs and their possible roles in regulating specific transcripts in fat body, hemocytes, and midgut. Insect Biochem Mol Biol 62:11-22

Showing the most recent 10 out of 14 publications