As highlighted in the 'Bad Bugs, No Drugs' campaign by the Infectious Diseases Society of America (IDSA), There simply aren't enough new drugs in the pharmaceutical pipeline to keep pace with drug resistant bacterial infections, so-called `superbugs'. Numerous hospitals worldwide have experienced outbreaks of infections caused by multidrug-resistant (MDR) Pseudomonas aeruginosa, one of the six top-priority dangerous ESKAPE microorganisms identified by the IDSA that require the most urgent attention to discover new antibiotics. Sadly, no novel antibiotics against MDR P. aeruginosa will be available for many years to come. Polymyxins (i.e. colistin and polymyxin B) are now being used as the `last-line' of therapy for infections caused by these very problematic MDR pathogens. Most unfortunately, the emergence of polymyxin resistance has been increasingly reported recently. In essence, resistance to polymyxins implies a total lack of antibiotics for treatment of life-threatening infections caused by these Gram-negative bacteria. Research Design: Our research strategy includes R21 and R33 phases. The overall objective of this project is to harness inhaled bacteriophages as natural predators to combat the superbugs in respiratory infections. Our over-arching hypothesis is that inhalation delivery of phages as an aerosol will provide a safe and efficacious local treatment for MDR infections in the lungs. R21 phase includes two Specific Aims: (1) to produce novel phage powder formulations for inhalation aerosol delivery to the lungs, and (2) to establish the validity and utility of these phge formulations by physicochemical characterization and proof-of- concept efficacy study. If the specific milestones in R21 phase are met, the R33 phase will (1) elucidate the mechanism responsible for stabilization of phages in powder formulations, and evaluate the storage stability of the phage inhalation formulations [Specific Aim 3], and in parallel, examine the pharmacokinetics and potential toxicity of inhaled phage formulations [Specific Aim 4]. Finally, in vivo efficacy studies of inhaled phage formulations will be conducted using animal infection models [Specific Aim 5]. Together, these studies will identify the best phage formulation (plus one backup) for further pre-clinical pharmacological evaluations. As phages are already used clinically, there is great potential to rapidly translate our research findings to the clinic. Significance: This project holds great promise for the development of a novel phage therapy for respiratory infections caused by MDR P. aeruginosa. Our inter-disciplinary approach will provide the fastest track and cost effective clinical solutions for inhaled phage therapy to combat the very problematic Gram-negative `superbug'. Overall, this project targets an urgent global unmet medical need and it aligns perfectly with the 2014 NIAID Antimicrobial Resistance Research Strategic Approaches.

Public Health Relevance

The world is facing an enormous and growing threat from the emergence of carbapenem-resistant Pseudomonas aeruginosa that are resistant to almost all antibiotics, while no novel antibiotics are in the current drug discovery pipeline. As described in the `Bad Bugs, No Drugs' paper published by the Infectious Diseases Society of America, 'as antibiotic discovery stagnates, a public health crisis brews'. This project aims to develop novel inhaled bacteriophage therapy and it aligns perfectly with the 2014 NIAID Antimicrobial Resistance Research Strategic Approaches.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21AI121627-01
Application #
9020280
Study Section
Special Emphasis Panel (ZAI1)
Program Officer
Lu, Kristina
Project Start
2015-12-01
Project End
2017-11-30
Budget Start
2015-12-01
Budget End
2016-11-30
Support Year
1
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Sydney
Department
Type
DUNS #
752389338
City
Sydney
State
Country
Australia
Zip Code
2006
Leung, Sharon S Y; Parumasivam, Thaigarajan; Nguyen, An et al. (2018) Effect of storage temperature on the stability of spray dried bacteriophage powders. Eur J Pharm Biopharm 127:213-222
Chang, Rachel Yoon Kyung; Chen, Ke; Wang, Jiping et al. (2018) Proof-of-Principle Study in a Murine Lung Infection Model of Antipseudomonal Activity of Phage PEV20 in a Dry-Powder Formulation. Antimicrob Agents Chemother 62:
Leung, Sharon S Y; Parumasivam, Thaigarajan; Gao, Fiona G et al. (2017) Effects of storage conditions on the stability of spray dried, inhalable bacteriophage powders. Int J Pharm 521:141-149
Chang, Rachel Y; Wong, Jennifer; Mathai, Ash et al. (2017) Production of highly stable spray dried phage formulations for treatment of Pseudomonas aeruginosa lung infection. Eur J Pharm Biopharm 121:1-13
Leung, Sharon S Y; Parumasivam, Thaigarajan; Gao, Fiona G et al. (2016) Production of Inhalation Phage Powders Using Spray Freeze Drying and Spray Drying Techniques for Treatment of Respiratory Infections. Pharm Res 33:1486-96