Serological evidence of infection with Toxoplasma gondii can be seen in up to 40% of humans. Infection with this Apicomplexan parasite can cause a severe congenital infection with an associated fetopathy. T. gondii is also a cause of opportunistic infections in immune compromised hosts. The predilection of this parasite for the central nervous system (CNS) causing necrotizing encephalitis and the eye causing chorioretinitis constitutes its major threat to patients. In both congenital infection and in immune compromised patients CNS and ocular toxoplasmosis is believed to be a consequence of the reactivation of chronic or latent infection due to persistent tissue cysts (bradyzoites) of T. gondii. The presence of these tissues cysts in brain and muscle are critical for persistence of this protozoan parasite. We have established that cysts are enclosed in highly glycosylated cyst wall, but the role(s) of glycosylation in persistence and the pathogenesis of parasites are not fully understood. Several glycoproteins are known to be expressed and localized to the cyst wall. Our laboratory group has demonstrated that one of these cyst wall glycoproteins, CST1, is critical in the differentiation of the parasites and formation of the cyst wall structure. Furthermore, we have demonstrated that CST1 is primarily modified by o-linked glycosylation and that this glycosylation of CST1 is vital for stability of the cyst wall. This R21 will focus on the development of a novel approach and reagents that we have developed that employ click chemistry and porcine leukocyte esterase (PLE) to allow selective labeling of glycoproteins in this obligate intracellular organism. Using genetically modified T. gondii strains that have various glycosyltransferases (ppGalNAc-Ts) knockouts we will characterize the o-glycoproteome of T. gondii during cyst formation. The proposed studies utilize a proteomic approach employing click chemistry and mass spectrometry to validate our new PLE click chemistry strategy. This PLE technique is applicable to many compounds and, once validated, will provide a tool for selective delivery of small molecules to obligate intracellular pathogens, permitting selective labeling of these organisms as well as selective targeting of pathways. The interdisciplinary team that has been assembled for this project includes internationally recognized expertise in T. gondii bradyzoite biology (Dr. Louis Weiss), orthogonal click chemistry (Dr. Peng Wu) and glycobiology (Dr. Pamela Stanley).

Public Health Relevance

Toxoplasma gondii infection can result in harm to both immune compromised individuals and babies due to damage it causes in the eye and central nervous system resulting in a latent infection that is often recurrent. We have found that glycosylation is critical for this latent infection. This R21 will develop novel tools for the analysis of the glycoproteome of T. gondii using a combination of new analytical techniques.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Exploratory/Developmental Grants (R21)
Project #
Application #
Study Section
Pathogenic Eukaryotes Study Section (PTHE)
Program Officer
Mcgugan, Glen C
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Albert Einstein College of Medicine, Inc
United States
Zip Code
Murata, Yuho; Sugi, Tatsuki; Weiss, Louis M et al. (2017) Identification of compounds that suppress Toxoplasma gondii tachyzoites and bradyzoites. PLoS One 12:e0178203
Tomita, Tadakimi; Sugi, Tatsuki; Yakubu, Rama et al. (2017) Making Home Sweet and Sturdy: Toxoplasma gondii ppGalNAc-Ts Glycosylate in Hierarchical Order and Confer Cyst Wall Rigidity. MBio 8: