Immune responses to antigens expressed by tumor cells can be exploited for treating cancer patients. Recent clinical trials have shown that adoptive T cell transfer (ACT) in combination with non-myeloablative chemotherapy frequently cause objective clinical responses in patients with advanced melanoma. However, tumor reactive T cells are difficult to obtain from most malignancies and the majority of cancer patients are thus ineligible for ACT. To circumvent this hurdle, we have developed a TCR gene transfer approach which can provide a source of autologous tumor reactive T cell from any patient. Results from early clinical trials using TCR gene-modified T cells have been relatively disappointing. One potential reason is that the T cells used, in order to be efficiently transduced, were fully activated. Regrettably, this may render the effector cells incapable of persisting and differentiating into the """"""""correct"""""""" phenotype needed for effective anti-tumor activity in vivo. We have recently developed a novel method for selecting transduced cells based on the inclusion of a modified CD34 cassette in our viral vectors. This modified CD34 cassette allows us to rapidly enrich transduced T cell cultures for redirected effector cells to high purity using clinically applicable methodologies. In this exploratory application, we proposed to combine this CD34 selection system with lentiviral vectors to determine if it is feasible to enrich transduced quiescent human T cells, with moderate frequency of redirected T cells, to sufficient purity for therapy. The function of the resting redirected T cells will be evaluated in vitro and in a xenogenic in vivo model to determine if quiescent TCR transduced T cells are superior to their fully activated counterparts. This study represents the first evaluation of resting TCR gene-modified T cells and the results from this study could be rapidly incorporated into future TCR gene transfer clinical trials that offer patients a novel type of autologous tumor reactive T cells with greater therapeutic potential.

Public Health Relevance

The relevance of this proposal to public health is to generate a novel type of effector T cell population that can be used for adoptive T cell transfer. Using a combination of novel technologies we developed, we will redirect the specificity of naove resting human T cells to recognize the melanoma/melanocyte associated antigen tyrosinase;we hope to demonstrate in a mouse model for human melanoma that these TCR gene- modified naove T cells are superior to their fully activated counterparts. If true, the next step would be to evaluate these novel effectors in clinical trial treating advanced stage melanoma patients.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21CA153789-01
Application #
8004586
Study Section
Special Emphasis Panel (ZRG1-OTC-W (02))
Program Officer
Yovandich, Jason L
Project Start
2010-06-01
Project End
2012-05-31
Budget Start
2010-06-01
Budget End
2011-05-31
Support Year
1
Fiscal Year
2010
Total Cost
$192,488
Indirect Cost
Name
Medical University of South Carolina
Department
Surgery
Type
Schools of Medicine
DUNS #
183710748
City
Charleston
State
SC
Country
United States
Zip Code
29425
Spear, Timothy T; Wang, Yuan; Smith Jr, Thomas W et al. (2018) Altered Peptide Ligands Impact the Diversity of Polyfunctional Phenotypes in T Cell Receptor Gene-Modified T Cells. Mol Ther 26:996-1007
Riley, Timothy P; Hellman, Lance M; Gee, Marvin H et al. (2018) T cell receptor cross-reactivity expanded by dramatic peptide-MHC adaptability. Nat Chem Biol 14:934-942
Wang, Yuan; Singh, Nishant K; Spear, Timothy T et al. (2017) How an alloreactive T-cell receptor achieves peptide and MHC specificity. Proc Natl Acad Sci U S A 114:E4792-E4801
Spear, Timothy T; Wang, Yuan; Foley, Kendra C et al. (2017) Critical biological parameters modulate affinity as a determinant of function in T-cell receptor gene-modified T-cells. Cancer Immunol Immunother 66:1411-1424
Spear, Timothy T; Callender, Glenda G; Roszkowski, Jeffrey J et al. (2016) TCR gene-modified T cells can efficiently treat established hepatitis C-associated hepatocellular carcinoma tumors. Cancer Immunol Immunother 65:293-304
Blevins, Sydney J; Pierce, Brian G; Singh, Nishant K et al. (2016) How structural adaptability exists alongside HLA-A2 bias in the human ?? TCR repertoire. Proc Natl Acad Sci U S A 113:E1276-85
Hellman, Lance M; Yin, Liusong; Wang, Yuan et al. (2016) Differential scanning fluorimetry based assessments of the thermal and kinetic stability of peptide-MHC complexes. J Immunol Methods 432:95-101
Spear, Timothy T; Riley, Timothy P; Lyons, Gretchen E et al. (2016) Hepatitis C virus-cross-reactive TCR gene-modified T cells: a model for immunotherapy against diseases with genomic instability. J Leukoc Biol 100:545-57