Even when treated with aggressively with current therapies, most patients with primary malignant brain tumors (glioma) survive less than two years. Although targeted therapies are being developed, the blood-brain barrier prevents large molecules from penetrating the central nervous system and moving to the brain. Because gliomas rarely metastasize, a localized tumor treatment could be sufficient to prevent the disease from progressing. As a result, methods are being developed to allow for the delivery of tumor-specific macromolecules directly into the brain tumors. However, these approaches require infusions of high-volumes of drugs which can be time consuming or impractical in an organ with limited space capacity, such as the brain. Thus, there is a pressing need for improved methods to deliver targeted macromolecules into brain tumors. The goal of this project is to fabricate and evaluate the feasibility of a novel instrument that is capable of creating a cavity within brain tumors using image-guided, minimally invasive techniques. The cavity that is generated by the instrument can then be used as a reservoir to deliver anti-cancer macromolecules or cells directly into the tumor. Using image guidance, the instrument is inserted into the tumor through a small burr hole for central tumor debulking. The unique mechanical features of this instrument will allow it to detach, fragment, cauterize and aspirate the tumor tissue through a small channel. Initial studies using proof-of concept prototypes have demonstrated the mechanical feasibility of this approach. Here, we propose to fabricate prototypes of a pre-clinical grade device, and characterize the performance of this instrument in vitro and in vivo. After completing this project, we expect to generate instrument designs for fabricating clinical- grade prototypes that are suitable for testing in human safety trials.

Public Health Relevance

We propose to develop a novel, neurosurgical instrument that is minimally invasive and can rapidly and safely remove brain tumor tissue. Novel anti-cancer treatments can then be delivered into the cavity, where they can interact directly with the tumor. Successful development of this instrument will directly impact public health by providing alternative therapies for malignant tumors and potentially, blood clots in the brain.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Exploratory/Developmental Grants (R21)
Project #
Application #
Study Section
Bioengineering, Technology and Surgical Sciences Study Section (BTSS)
Program Officer
Timmer, William C
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
City of Hope/Beckman Research Institute
United States
Zip Code
Chen, Xuebo; Zhang, Leying; Zhang, Ian Y et al. (2014) RAGE expression in tumor-associated macrophages promotes angiogenesis in glioma. Cancer Res 74:7285-97