Circulating exosomes have emerged as a new class of biomarker which enables non- invasive, real-time disease monitoring. Most cancer cells actively release large numbers of exosomes into the circulation, that carry molecular constituents of the originating cells. Capturing such information can thus represent a new avenue to probe and serially monitor the tumor molecular status. We have previously developed miniaturized platforms to facilitate exosome analyses and established the clinical utility of exosomes for cancer diagnosis and monitoring through subsequent clinical studies. Predicting and detecting the emergence of drug resistance, however, is still challenging, as it requires multifaceted pro?ling of exosomal proteins, their post-translational modi?cations, and mRNA changes. The overall goal of this application is to advance a new screening technology for comprehensive exosomal protein/mRNA pro?ling. We will speci?cally explore the DNA-barcode labeling system to unify protein and mRNA detection into a single assay format: antibodies will be labeled with DNA tags whose sequences are unique for different protein targets; and ligation-dependent DNA tags will be used to detect mRNA targets.
In Aim 1, we will develop and validate the proposed assay. We will implement a new, integrated ?uidic system to perform cancer-speci?c exosome enrichment and DNA-barcoding on-chip. The device will be fabricated in thermoplastics (via injection molding) to promote system robustness and scaled-up production.
In Aim 2, we will investigate the utility of exosomal protein/mRNA pro?ling in predicting and monitoring drug resistance in vitro and in vivo. The developed platform will be applied to analyze exosomes collected from ovarian cell lines and ovarian cancer patients undergoing therapies. Exosomal protein and mRNA targets will be monitored at baseline and longitudinally to differentiate treatment response and monitor the emergence of drug resistance. We envision that the new assay technology would have signi?cant clinical implications by accelerating the translation of exosomes, not only as a cancer diagnostic biomarker but also as an indicator of drug ef?cacy and as a potential molecular strati?er for treatment decision.

Public Health Relevance

We will develop a novel DNA-barcoding platform that can capture cancer-specific exosomes and subsequently analyze their protein and mRNA contents in a single, unified assay format. Using the system, we will screen circulating exosomes from cancer patients undergoing treatment. This study will rigorously test the hypothesis that exosomes could serve as a noninvasive biomarker to monitor and predict treatment outcome.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21CA205322-01
Application #
9099367
Study Section
Special Emphasis Panel (ZCA1)
Program Officer
Sorg, Brian S
Project Start
2016-05-01
Project End
2018-04-30
Budget Start
2016-05-01
Budget End
2017-04-30
Support Year
1
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
Im, Hyungsoon; Pathania, Divya; McFarland, Philip J et al. (2018) Design and clinical validation of a point-of-care device for the diagnosis of lymphoma via contrast-enhanced microholography and machine learning. Nat Biomed Eng 2:666-674
Park, Jongmin; Im, Hyungsoon; Hong, Seonki et al. (2018) Analyses of Intravesicular Exosomal Proteins Using a Nano-Plasmonic System. ACS Photonics 5:487-494
Min, Jouha; Nothing, Maria; Coble, Ben et al. (2018) Integrated Biosensor for Rapid and Point-of-Care Sepsis Diagnosis. ACS Nano 12:3378-3384
Shao, Huilin; Im, Hyungsoon; Castro, Cesar M et al. (2018) New Technologies for Analysis of Extracellular Vesicles. Chem Rev 118:1917-1950
Hong, Seonki; Park, Ki Soo; Weissleder, Ralph et al. (2017) Facile silicification of plastic surface for bioassays. Chem Commun (Camb) 53:2134-2137
Park, Ki Soo; Kim, Hoyoung; Kim, Soojin et al. (2017) Nanomagnetic System for Rapid Diagnosis of Acute Infection. ACS Nano 11:11425-11432
Park, Jongmin; Lin, Hsing-Ying; Assaker, Jean Pierre et al. (2017) Integrated Kidney Exosome Analysis for the Detection of Kidney Transplant Rejection. ACS Nano 11:11041-11046
Lin, Hsing-Ying; Huang, Chen-Han; Park, Jongmin et al. (2017) Integrated Magneto-Chemical Sensor For On-Site Food Allergen Detection. ACS Nano 11:10062-10069
Jeong, Sangmoo; Eskandari, Roozbeh; Park, Sun Mi et al. (2017) Real-time quantitative analysis of metabolic flux in live cells using a hyperpolarized micromagnetic resonance spectrometer. Sci Adv 3:e1700341
Im, Hyungsoon; Lee, Kyungheon; Weissleder, Ralph et al. (2017) Novel nanosensing technologies for exosome detection and profiling. Lab Chip 17:2892-2898

Showing the most recent 10 out of 13 publications