Familial adenomatous polyposis (FAP) is an autosomal dominant inherited disorder caused by a germline mutation in the adenomatous polyposis coli (APC) gene, leading to a nearly 100% risk of colorectal cancer and a 12% lifetime risk of duodenal cancer. Since prophylactic colectomy is now the standard of care when colorectal polyposis increases beyond endoscopic management, duodenal cancer has now become the leading cause of death in FAP. Efficacious chemoprevention of duodenal neoplasia is, therefore, an unmet clinical need. As part of a Phase II double blind, randomized placebo-controlled trial (FAPEST trial) of sulindac and erlotinib therapy in FAP patients, we showed a profound 38% decrease in duodenal polyp burden at 6 months (P=4.2 X 10-12). However, the mechanisms by which COX and EGFR inhibition protects against duodenal neoplasia remain incompletely understood. In addition the high rate of adverse reactions limits its clinical application. We propose to use state-of-the art metabolomic strategies to discern the underlying mechanisms of this striking chemopreventive response to sulindac-erlotinib and to identify biomarkers that will bring this effective combination to clinical application.
Specific aims are: (1) Identification of changes in the duodenal metabolomic profile associated with sulindac and erlotinib therapy in patients with FAP and (2) identification of novel metabolomic markers associated with chremopreventive response to sulindac and erlotinib in patients with FAP. As part of a collaboration with the NIH West Coast Metabolomics Center we will use a set of 52 FAP patients from the FAPEST trial and characterize the normal duodenal tissue with respect to both targeted and untargeted metabolomics. Specifically, we will use the following three technology platforms to detect both identified and ?novel? metabolite signals which will provide further mechanistic understanding and innovate biomarkers: 1. Complex lipids by CSH-QTOF mass-spectrometry (MS) (n=350 lipids); 2. Primary metabolites such as amino acids, sugars and hydroxyl acids by GCTOF MS (n=170); and 3. Oxylipin analysis by UPLC-QTrap MS (n=30). This study is unique in that it builds on a highly successful chemoprevention trial to 1) identify biologic mechanisms that inhibit gastrointestinal carcinogenesis and 2) to develop indicators of response and adverse reactions. This work may have impact beyond FAP to sporadic CRC where somatic APC mutations are highly prevalent. It will also be the first in vivo metabolomic profiling of the effects of erlotinib, a broadly used chemotherapeutic drug. Finally, it will provide proof-of-principle of the use of metabolomics in chemoprevention studies. We anticipate that the metabolomic profiles identified could be rapidly tested in subsequent chemoprevention trials and subsequently adopted into clinical practice with clear near-term impact on management of FAP patients.

Public Health Relevance

Colorectal cancer is the third most common malignancy in terms of new cases and cancer related death in the United States. Familial adenomatous polyposis (FAP), a model of colorectal carcinogenesis, is an autosomal dominant inherited disorder characterized by a 100% risk of colorectal cancer and 12% risk of duodenal cancer, for which efficacious chemoprevention is an unmet clinical need. Successful chemoprevention in FAP using a combination of sulindac and erlotinib was recently demonstrated by our group and the goals of this proposal are to better understand the mechanism underlying this successful chemoprevention using a metabolomics strategy to discover biomarkers that will bring this prevention strategy to clinical application.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Exploratory/Developmental Grants (R21)
Project #
5R21CA217130-02
Application #
9443617
Study Section
Special Emphasis Panel (ZCA1)
Program Officer
Umar, Asad
Project Start
2017-03-01
Project End
2019-02-28
Budget Start
2018-03-01
Budget End
2019-02-28
Support Year
2
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of Utah
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
009095365
City
Salt Lake City
State
UT
Country
United States
Zip Code
84112