. Cytochrome P450 (CYP) 3A4 is the most abundant CYP enzyme in the human liver, and it metabolizes ~60% of known drugs. CYP3A4-mediated drug metabolism is impaired in patients with infections, diabetes, cancer, cardiovascular diseases, liver disorders and many other diseases. Disruptions in drug metabolism in diseases are associated with induction of inflammatory markers and reductions in expression of CYP enzymes. Thus, in most patients, medications are exposed to a micro-environment where inflammatory mediators are activated. This increases the risks of drug-drug interactions and adverse drug reactions in these patients. The objective of this exploratory proposal is to perform genome-wide mapping and bioinformatics analysis to identify key regulators involved in down-regulation of human CYP3A4 enzymes in vivo. CYP3A4 gene expression is regulated by basal transcription factors as well as nuclear receptors (NRs). In vitro studies have shown that CYP3A4 expression is also regulated by microRNAs (miRNAs). Thus, down-regulation of CYP3A4 enzymes may be a cumulative effect of transcriptional and post-transcriptional modifications by transcription factors, NRs and/or miRNAs. Our central hypothesis is that down-regulation of CYP3A4 expression is controlled by transcription factor/NR-associated epigenetic modifications at the target chromatin as well as by changes in miRNA binding to CYP3A4 mRNA.
The first aim of this proposal will examine the hypothesis that down- regulation of CYP3A4 gene is controlled by transcription factor/NR-associated epigenetic modifications at the target chromatin.
The second aim will determine the role of miRNAs in down-regulation of CYP3A4 enzymes in vivo. CYP3A4 expression can be activated by diverse chemicals which induce NRs, including pregnane X receptor (PXR). On the other hand, CYP3A4 can be down-regulated by inflammatory mediators including cytokines and the bacterial endotoxin, lipopolysaccharide (LPS) which are associated with diseases. To identify the key regulators involved in alteration of CYP3A4 enzymes, our strategy is to utilize a combined approach of CYP3A4 induction by PXR ligand (e.g. PCN) and CYP3A4 down-regulation by LPS. The proposed studies using genome-based approaches can unravel novel regulatory elements which contribute to down-regulation of human CYP3A4 enzymes in vivo. These regulators can then be targeted to prevent undesirable effects of drugs due to changes in CYP3A4-mediated drug metabolism. Ultimately, this can lead to the development of new strategies to improve the safety of medications in individual patients.

Public Health Relevance

This study will determine the molecular mechanisms underlying altered expression of human CYP3A4 enzymes in vivo. Understanding the mechanism of regulation of CYP3A4 enzymes will lead to the future development of rational approaches to prevent adverse drug reactions due to disruptions in drug metabolism in patients. Thus, the proposed studies will advance the field of drug metabolism in humans, in relation to various diseases such as diabetes, cancer, liver disorders, infectious diseases, etc.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21DA035751-01A1
Application #
8656023
Study Section
Xenobiotic and Nutrient Disposition and Action Study Section (XNDA)
Program Officer
Purohit, Vishnudutt
Project Start
2014-03-15
Project End
2016-02-29
Budget Start
2014-03-15
Budget End
2015-02-28
Support Year
1
Fiscal Year
2014
Total Cost
$241,043
Indirect Cost
$68,560
Name
University of Houston
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
036837920
City
Houston
State
TX
Country
United States
Zip Code
77204
Taneja, Guncha; Chu, Chun; Maturu, Paramahamsa et al. (2018) Role of c-Jun-N-Terminal Kinase in Pregnane X Receptor-Mediated Induction of Human Cytochrome P4503A4 In Vitro. Drug Metab Dispos 46:397-404
Mallick, Pankajini; Taneja, Guncha; Moorthy, Bhagavatula et al. (2017) Regulation of drug-metabolizing enzymes in infectious and inflammatory disease: implications for biologics-small molecule drug interactions. Expert Opin Drug Metab Toxicol 13:605-616
Mallick, Pankajini; Basu, Sumit; Moorthy, Bhagavtula et al. (2017) Role of Toll-like receptor 4 in drug-drug interaction between paclitaxel and irinotecan in vitro. Toxicol In Vitro 41:75-82
Ghose, Romi; Mallick, Pankajini; Taneja, Guncha et al. (2016) In Vitro Approaches to Study Regulation of Hepatic Cytochrome P450 (CYP) 3A Expression by Paclitaxel and Rifampicin. Methods Mol Biol 1395:55-68
Shah, Pranav; Omoluabi, Ozozoma; Moorthy, Bhagavatula et al. (2016) Role of Adaptor Protein Toll-Like Interleukin Domain Containing Adaptor Inducing Interferon ? in Toll-Like Receptor 3- and 4-Mediated Regulation of Hepatic Drug Metabolizing Enzyme and Transporter Genes. Drug Metab Dispos 44:61-7