Among the most desperate and memorable patients for hearing health-care providers are those who suffer a debilitating intolerance to the loudness of everyday sounds. This classical condition, known as hyperacusis, presents a unique treatment challenge. These terribly debilitated individuals characteristically present in the clinic wearing earplugs and/or earmuffs to limit offending sound exposures, and commonly report withdrawal from routine daily activities, including those at work and home. In extreme cases, the problem may require psychological or psychiatric intervention to reduce the risk of suicide. The primary challenge for the clinician is to transition the debilitated patient out of sound-attenuating hearing protection (which when used for prolonged periods is counterproductive and may further exacerbate hyperacusis) and into a sound-enriching therapy to promote normal sound tolerance. The dilemma for the clinician, in the absence of an efficient and effective intervention strategy, is how best to facilitate the transition of the patient, who may often cling to sound protection, into productive sound-enriching treatment. We propose to attack this quandary with an extreme form of amplitude compression that has been advocated as an alternative to sound- attenuating protection for facilitating desensitization of debilitated hyperacusis patients. Our compression scheme will be implemented in bilateral customized combination hearing-aid/noise generator devices, deeply seated and acoustically sealed for maximum sound attenuation (offset by unity gain) within the ear canals. This device offers, in a single flexible instrument, a promising transitional intervention to sound-enriching therapy, replacing counterproductive sound-attenuating earplugs with loudness-suppressing compression processing that affords improved audibility and a broader dynamic range, ostensibly without opposing the therapeutic effects of enriching sound therapy. In this project, engineering, implementation, and validation of the compression processing device will be completed in Aim 1.
In Aim 2, the device, used as a transitional tool to replace maladaptive hearing protection, will be assessed together with enriching sound therapy from noise generators in a repeated-measures within-subject design to track treatment effects and dynamics in patients with debilitating hyperacusis. The primary outcome measure to quantify the treatment effects will be change in loudness judgments measured longitudinally from start to end of the sound therapy treatment. The results from this high-impact research will guide and shape innovative sound-based interventions to streamline treatment and enhance the well-being and quality of life for severely affected hyperacusis patients.

Public Health Relevance

This clinical project is motivated by those desperately debilitated persons with severe hyperacusis who seek a transitional intervention to bring them out of quiet sound-attenuating basements and awkward earplug/earmuff treatments and back into typical noisy social and occupational settings that are routinely encountered in daily life. In this project, we will engineer and evaluate a promising, but technically challenging loudness-suppression scheme that has been championed as an intermediate step in the desensitization process for transitioning a debilitated patient from counter-productive sound attenuation to sound-enriching treatments that promote normal sound tolerance.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21DC015054-01A1
Application #
9180567
Study Section
Auditory System Study Section (AUD)
Program Officer
Miller, Roger
Project Start
2016-09-01
Project End
2018-08-31
Budget Start
2016-09-01
Budget End
2017-08-31
Support Year
1
Fiscal Year
2016
Total Cost
$235,965
Indirect Cost
$64,748
Name
University of Alabama in Tuscaloosa
Department
Psychology
Type
Schools of Arts and Sciences
DUNS #
045632635
City
Tuscaloosa
State
AL
Country
United States
Zip Code
35487