Intestinal dysfunction may impair BA uptake and feedback inhibition of hepatic bile acid (BA) synthesis, thereby resulting in BA malabsorption (BAM). Increased fecal BAs promote colon pathology;cholerrheic diarrhea and possibly neoplasia. Intestinal BA uptake is mediated primarily by the ileal Apical Sodium-dependent Bile Acid Transporter (ASBT;SLC10A2). Reduced ASBT function decreases BA absorption;Asbt-null mice have increased fecal BAs. In primary BAM impaired feedback inhibition by intestinal fibroblast growth factor-19 (FGF19) increases BA synthesis and intestinal BA levels overwhelm BA transporter capacity. Fgf15-null mice mimic primary BAM;they also have increased fecal BAs. Our recently published in vitro and in silico data indicate that commonly-used drugs, including statins, inhibit ASBT function. If drugs impair ASBT function in vivo, altered BA transport may result in unanticipated side-effects, including colon pathology. Current tools to measure BA transport and distribution in vivo are limited. To remedy this limitation, we conceived an innovative approach in live animals that utilizes combined proton (1H)-fluorine (19F) magnetic resonance imaging (MRI);a novel methodology with translational potential for clinical practice. R21 funding will support a research team uniquely qualified to create and test (in vitro and in vivo) multi-fluorinated, non-radioactive (19F) BAs (MFBA) using biochemical methods and live animal MRI: Dr. Raufman, an expert in BA effects on colon epithelium;Dr. Polli, an expert in measuring BA transport in vitro;Dr. Dawson, an expert in measuring BA transport in vivo;Dr. Yu, an expert chemist who developed 19F-imaging tracer (19FIT);and Dr. Xu, an expert in small animal MRI. We will design, create and test two classes of 19F-labeled agents: (1) MFBA that are bound and transported by ASBT [e.g. 19F-labeled chenodeoxycholic acid (19F3-CDCA) with three 19F atoms/molecule] and (2) Inactive control agents neither bound nor transported by ASBT (e.g. 19FIT). To accomplish these goals, we propose two Specific Aims: >1. Create multi-fluorinated BAs and test in vitro stability and interaction with enteric BA transporters. >2. Test in vivo stability and transport of multi-fluorinated BAs in WT, Slc10a2- /- and Fgf15-/- mice using biochemical methods and live-animal magnetic resonance imaging. Our multidisciplinary team includes established investigators with unquestioned expertise in measuring bile acid transport. This team is uniquely qualified to develop this innovative technology based on magnetic resonance imaging of newly-created non-radioactive, fluorine-labeled bile acids that can be used to obtain both temporal and spatial information on bile acid transport in live animals and humans.

Public Health Relevance

In addition to their traditional role as detergents that facilitate fat absorption, bile acids are potent signaling molecules that affect multiple organs;they modulate gut motility and hormone production, colon physiology and cancer susceptibility, and alter vascular tone, glucose metabolism, lipid metabolism and energy utilization. To understand these complex actions of bile acids new technology is required that permits simultaneous monitoring of bile acid levels in the gastrointestinal tract and metabolic tissues. In this R21 application, we propose to develop an innovative technology based on magnetic resonance imaging of newly-created non- radioactive fluorine-labeled bile acids that can be used to obtain both temporal and spatial information in live animals and humans.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Exploratory/Developmental Grants (R21)
Project #
5R21DK093406-02
Application #
8514593
Study Section
Special Emphasis Panel (ZRG1-DKUS-D (03))
Program Officer
Sherker, Averell H
Project Start
2012-08-01
Project End
2014-07-31
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
2
Fiscal Year
2013
Total Cost
$187,444
Indirect Cost
$64,534
Name
University of Maryland Baltimore
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
188435911
City
Baltimore
State
MD
Country
United States
Zip Code
21201
Said, Anan H; Hu, Shien; Abutaleb, Ameer et al. (2017) Interacting post-muscarinic receptor signaling pathways potentiate matrix metalloproteinase-1 expression and invasion of human colon cancer cells. Biochem J 474:647-665
Cheng, Kunrong; Shang, Aaron C; Drachenberg, Cinthia B et al. (2017) Differential expression of M3 muscarinic receptors in progressive colon neoplasia and metastasis. Oncotarget 8:21106-21114
Felton, Jessica; Cheng, Kunrong; Said, Anan et al. (2016) Using Multi-fluorinated Bile Acids and In Vivo Magnetic Resonance Imaging to Measure Bile Acid Transport. J Vis Exp :
McLean, Leon P; Smith, Allen; Cheung, Lumei et al. (2015) Type 3 Muscarinic Receptors Contribute to Clearance of Citrobacter rodentium. Inflamm Bowel Dis 21:1860-71
Dong, Zhongqi; Li, Qing; Guo, Dong et al. (2015) Synthesis and Evaluation of Bile Acid-Ribavirin Conjugates as Prodrugs to Target the Liver. J Pharm Sci 104:2864-76
Raufman, Jean-Pierre; Dawson, Paul A; Rao, Anuradha et al. (2015) Slc10a2-null mice uncover colon cancer-promoting actions of endogenous fecal bile acids. Carcinogenesis 36:1193-200
Dong, Zhongqi; Ekins, Sean; Polli, James E (2015) Quantitative NTCP pharmacophore and lack of association between DILI and NTCP Inhibition. Eur J Pharm Sci 66:1-9
Dong, Zhongqi; Ekins, Sean; Polli, James E (2015) A substrate pharmacophore for the human sodium taurocholate co-transporting polypeptide. Int J Pharm 478:88-95
Hu, Shien; Liu, Lan; Chang, Eugene B et al. (2015) Butyrate inhibits pro-proliferative miR-92a by diminishing c-Myc-induced miR-17-92a cluster transcription in human colon cancer cells. Mol Cancer 14:180
Rachakonda, Vikrant; Jadeja, Ravirajsinh N; Urrunaga, Nathalie H et al. (2015) M1 Muscarinic Receptor Deficiency Attenuates Azoxymethane-Induced Chronic Liver Injury in Mice. Sci Rep 5:14110

Showing the most recent 10 out of 19 publications