This proposal describes a program to develop nanoparticles with advanced luminescence properties by combining zinc sulfide (ZnS) semiconductor nanoparticles and luminescent lanthanide cations so that the photophysical advantages of each are exploited.
The aim i s to use ZnS nanoparticles, with their large absorption cross section, to sensitize the lanthanide cations emission by an """"""""antenna effect"""""""" and to provide a matrix that protects the lanthanides from nonradiative deactivation. ZnS is a desirable matrix because it is less toxic than the widely used CdSe nanocrystals, however the ZnS bandgap lies in the ultraviolet/blue spectral region, which has made them incompatible with biological imaging applications because of the strong interference between UV/blue photons and biological systems. However, the addition of lanthanide cations to the ZnS matrix causes the excitation energy to be released through the lanthanide cations as sharp emission bands in the visible and near infrared, determined by the nature of the lanthanide action. The lanthanide cations have sharp well defined emission bands that are insensitive to their environment (such as temperature, pH, pressure or biological environment) and allows for spectral discrimination from biological background (autofluorescence). Lanthanide cations also have longer luminescent lifetimes (micro- to milliseconds) than many other fluorescence emitters, allowing for temporal discrimination between the analyte signal and the background fluorescence. Chemical derivatization of the nanoparticle surface will be used to provide the biochemical selectivity for the nanocrystal probe and to make the material safe and soluble for the targeted biological applications. These materials will be tested in tissue and cell-based preparations and compared to commercially available probes for use in fluorescence microscopy applications. The toxicity of the nanocrystals will be evaluated using highly sensitive optical imaging methodologies for detecting cellular damage and death in primary cell culture models.

Public Health Relevance

We will develop a novel family of luminescent nanoparticles that emit visible or near infrared light and are specifically designed to operate as fluorescent reporters in a broad range of """"""""in vivo"""""""" and """"""""in vitro"""""""" bioanalytical applications, including biological imaging. Ultimately, these nanoparticles will constitute a versatile luminescence platform whose optical properties will complement existing fluorophores, their signal being easily discriminated from the native fluorescence of biological systems.

National Institute of Health (NIH)
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Exploratory/Developmental Grants (R21)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-NANO-M (01))
Program Officer
Conroy, Richard
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pittsburgh
Schools of Arts and Sciences
United States
Zip Code
Mukherjee, Prasun; Sloan, Robin F; Shade, Chad M et al. (2013) A Post-synthetic Modification of II-VI Nanoparticles to Create Tb(3+) and Eu(3+) Luminophores. J Phys Chem C Nanomater Interfaces 117:14451-14460
Lemonnier, Jean-Francois; Babel, Lucille; Guenee, Laure et al. (2012) Perfluorinated aromatic spacers for sensitizing europium(III) centers in dinuclear oligomers: better than the best by chemical design? Angew Chem Int Ed Engl 51:11302-5
Mukherjee, Prasun; Shade, Chad M; Yingling, Adrienne M et al. (2011) Lanthanide sensitization in II-VI semiconductor materials: a case study with terbium(III) and europium(III) in zinc sulfide nanoparticles. J Phys Chem A 115:4031-41
Lemonnier, Jean-Francois; Guenee, Laure; Beuchat, Cesar et al. (2011) Optimizing sensitization processes in dinuclear luminescent lanthanide oligomers: selection of rigid aromatic spacers. J Am Chem Soc 133:16219-34