The main hypothesis of this proposal is that clinical magnetic resonance imaging (MRI) is currently limited in its tradeoffs of spatial resolution, scan time, and signal-to-noise by a lack of accessible computational resources to enable clinical application of advanced MRI acquisition and reconstruction methods. While advanced MRI acquisition and reconstruction techniques are used in research, clinical utility requires that image reconstructions be completed in times that are on the order of the image acquisition (one or a few minutes). This proposal will develop, validate, and benchmark a flexible software package to allow for advanced MRI reconstructions to be executed on the already widespread, economical, and computationally-efficient many-core computing platforms offered by GPU-based commodity personal computers and clusters. Specifically, a GPU-based image reconstruction framework will be created with an easy interface to C-code and Matlab that allows users to perform reconstruction of data acquired with 3D non-Cartesian trajectories;utilizing multiple receiver coils for parallel imaging;compensating for magnetic field inhomogeneities associated with long data acquisition readouts;and incorporating prior anatomical information into the image reconstruction. The techniques will be validated through simulation, phantom, and human MRI acquisitions with metrics including computation time, normalized root mean square error, and noise variance. The software will be packaged with automatic optimization routines to enable fast execution on a variety of computational platforms, including both multi-core CPUs and many-core GPUs in PCs and clusters. The software, along with example reconstructions, sample data, user manuals, and programming documents will be distributed through the web, free of charge to educational users in accordance with the open source license. At the conclusion of the project, medical physicists at academic and medical institutions will be able to customize the software for their specific MR acquisitions and easily harness multi-core CPU and many-core GPU computational power. Integration of the proposed computational utility into the clinic will enable translation of current advanced image reconstruction techniques to the clinic and enable development of the next generation of MRI diagnostic technology.

Public Health Relevance

An advanced image reconstruction software library will be developed that allows clinical magnetic resonance imaging (MRI) to harness the emerging computational power provided by multi-core and many-core computational utilities in PCs and GPU-based clusters. The advanced image reconstruction software will allow medical physicists in the clinic to easily integrate custom imaging protocols into the general MR reconstruction framework and reap computational speed-ups on the order of 10 to 100 times. Leveraging this computational power, clinical imaging will be able to adopt advanced MR acquisition strategies that will lead to shorter scan sessions, higher signal-to-noise ratios, and higher spatial resolution than is possible with traditional MRI acquisitions.

National Institute of Health (NIH)
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Exploratory/Developmental Grants (R21)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-SBIB-J (90))
Program Officer
Luo, James
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Illinois Urbana-Champaign
Organized Research Units
United States
Zip Code
Holtrop, Joseph L; Sutton, Bradley P (2016) High spatial resolution diffusion weighted imaging on clinical 3 T MRI scanners using multislab spiral acquisitions. J Med Imaging (Bellingham) 3:023501
Holtrop, Joseph L; Loucks, Torrey M; Sosnoff, Jacob J et al. (2014) Investigating Age-related changes in fine motor control across different effectors and the impact of white matter integrity. Neuroimage 96:81-7
Johnson, Curtis L; Holtrop, Joseph L; McGarry, Matthew D J et al. (2014) 3D multislab, multishot acquisition for fast, whole-brain MR elastography with high signal-to-noise efficiency. Magn Reson Med 71:477-85
Gai, Jiading; Obeid, Nady; Holtrop, Joseph L et al. (2013) More IMPATIENT: A Gridding-Accelerated Toeplitz-based Strategy for Non-Cartesian High-Resolution 3D MRI on GPUs. J Parallel Distrib Comput 73:686-697
Zhao, Bo; Haldar, Justin P; Christodoulou, Anthony G et al. (2012) Image reconstruction from highly undersampled (k, t)-space data with joint partial separability and sparsity constraints. IEEE Trans Med Imaging 31:1809-20
Haldar, Justin P; Wang, Zhuo; Popescu, Gabriel et al. (2011) Deconvolved spatial light interference microscopy for live cell imaging. IEEE Trans Biomed Eng 58:2489-97
Christodoulou, Anthony G; Zhao, Bo; Liang, Zhi-Pei (2011) REGULARIZED IMAGE RECONSTRUCTION FOR PS MODEL-BASED CARDIOVASCULAR MRI. Proc IEEE Int Symp Biomed Imaging :57-60