MR-guided laser induced thermal therapy (MRgLITT) for treatment of cancerous lesions in the brain presents a minimally invasive alternative to conventional surgery, gaining use worldwide with multiple on-going clinical trials currently. These therapies incorporate real-time MR temperature imaging (MRTI) to provide feedback which makes these procedures safe and feasible. However, as these therapies translate into clinical studies, there are two deficiencies worth addressing. Firstly, laser heating in the presence of tissue interfaces and convective heat transfer (e.g., ventricles, vessels and tissue perfusion) may render planning of treatments by assuming symmetric ellipsoidal lesion generation difficult, particularly when multiple applicators with arbitrary placement are used. Second, MRTI information may become corrupt in some regions (e.g., from temperature dependent signal losses, blood, or susceptibility effects at interfaces) and the temperature information may be lost or become extremely uncertain, making decisions about treatment outcome difficult. Therefore, in order to enhance the safety, efficacy and conformality of treatment delivery, there exists a critical need for prospective 3D treatment planning of MRgLITT procedures as well as more robust real-time monitoring to complement MRTI. The primary goal of the proposed research is to develop and validate algorithms to provide both prospective 3D treatment planning and real-time model driven treatment monitoring for MRgLITT procedures in the brain. Such a system will incorporate the use of 3D MRI acquisitions currently used for neurosurgical and stereotactic treatment planning and allow the user to interactively navigate the tissue and simulate the effects of various applicator trajectories and laser exposures, update these plans once the laser is positioned, as well as provide real-time 3D estimation of damage based on the acquired multi-slice MR temperature imaging input. Completion of this project will provide not only the tools outlined above, but a framework for our long term goal of applying these models for computer optimized inverse treatment planning as well as real-time modeling for adaptive control of therapy. This project is both innovative and timely in that no technology presently exists for prospective 3D planning of this emerging therapeutic option, much less, integration of such an algorithm with data driven model prediction assistance for monitoring and treatment assessment. This research is high risk in that the complexity of the computational problems to be addressed in near real-time present both physical and theoretical hurdles to overcome, but our previous experience in this area indicate it is feasible.

Public Health Relevance

MR-guided laser induced thermal therapy (MRgLITT) for the treatment of cancerous lesions in the brain is a minimally invasive alternative to conventional surgery and is now available as a commercialized product with many clinical trials in operation or beginning. The primary goal of the proposed research is to develop, investigate and validate 3D prospective treatment planning and real-time MRTI driven model prediction assisted monitoring for MRgLITT procedures in the brain in order to enhance the efficacy and safety of these procedures. This project is both innovative and timely in that no technology presently exists to support prospective 3D treatment planning of this emerging therapeutic option nor data driven real-time modeling for prediction of temperature and tissue damage.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21EB010196-01A1
Application #
7991264
Study Section
Radiation Therapeutics and Biology Study Section (RTB)
Program Officer
Haller, John W
Project Start
2010-09-01
Project End
2012-08-31
Budget Start
2010-09-01
Budget End
2011-08-31
Support Year
1
Fiscal Year
2010
Total Cost
$197,500
Indirect Cost
Name
University of Texas MD Anderson Cancer Center
Department
Radiation-Diagnostic/Oncology
Type
Other Domestic Higher Education
DUNS #
800772139
City
Houston
State
TX
Country
United States
Zip Code
77030
Maier, Florian; Fuentes, David; Weinberg, Jeffrey S et al. (2015) Robust phase unwrapping for MR temperature imaging using a magnitude-sorted list, multi-clustering algorithm. Magn Reson Med 73:1662-8
Fahrenholtz, Samuel J; Moon, Tim Y; Franco, Michael et al. (2015) A model evaluation study for treatment planning of laser-induced thermal therapy. Int J Hyperthermia 31:705-14
Yeniaras, E; Fuentes, D T; Fahrenholtz, S J et al. (2014) Design and initial evaluation of a treatment planning software system for MRI-guided laser ablation in the brain. Int J Comput Assist Radiol Surg 9:659-67
Fahrenholtz, Samuel J; Stafford, R Jason; Maier, Florian et al. (2013) Generalised polynomial chaos-based uncertainty quantification for planning MRgLITT procedures. Int J Hyperthermia 29:324-35
Fuentes, D; Elliott, A; Weinberg, J S et al. (2013) An inverse problem approach to recovery of in vivo nanoparticle concentrations from thermal image monitoring of MR-guided laser induced thermal therapy. Ann Biomed Eng 41:100-11
Fuentes, D; Yung, J; Hazle, J D et al. (2012) Kalman filtered MR temperature imaging for laser induced thermal therapies. IEEE Trans Med Imaging 31:984-94
Feng, Yusheng; Fuentes, David (2011) Model-based planning and real-time predictive control for laser-induced thermal therapy. Int J Hyperthermia 27:751-61
Fuentes, David; Feng, Yusheng; Elliott, Andrew et al. (2010) Adaptive real-time bioheat transfer models for computer-driven MR-guided laser induced thermal therapy. IEEE Trans Biomed Eng 57:1024-30