Our understanding of tumor angiogenesis can be traced back for over two hundred years. However, it was not until recently (2004;FDA approved) that the first angiogenic inhibitor, bevacizumab (AvastinTM), was shown to increase overall survival (OS) in patients with colorectal cancer when combined with chemotherapy. Since this initial breakthrough, clinical studies targeting other cancers have been unable to reproduce these results. In patients with metastatic breast cancer, combining bevacizumab with chemotherapy did not improve OS and in many cases favored the placebo arm (AVADO and RIBBON studies) in spite of observing an increase in progression free survival (PFS). Clearly angiogenic inhibitors have demonstrated great promise, but their role remains to be fully elucidated. To address this lack of efficacy, we propose that therapeutic regimens of angiogenic inhibitors initially delay tumor growth by targeting its vasculature, but they also increase tumor and tissue hypoxia, which in turn, expand cancer stem cell (CSC) populations and increase therapeutic resistance and potentiate metastasis. If substantiated, our hypothesis would explain the temporary gains (PFS) but poor outcome. Given that distant metastatic failure in breast cancer patients leads to poor clinical outcome, particular emphasis will be placed on identifying breast cancer stem cells within regions of acute hypoxia associated with metastasis and targeting these regions by devising new regimens of angiogenic inhibitors. Realizing that ex vivo or in vitro cancer studies cannot reliably model the complex spatial-temporal variations in tumor oxygen levels, a novel Multivariate in vivo Hemodynamic imaging Model of Oxygen, dubbed MiHMO2, is proposed. MiHMO2 quantifies local variations in tissue hemodynamics by measuring the hemoglobin status (CtHb, SaO2) using Photoacoustic Computed Tomographic Spectroscopy and physiological state (perfusion, permeability, vascular and cellular volumes) using Dynamic Contrast-Enhanced CT within the tumor, and then fusing this information based on a mathematical model to obtain tissue local values of pO2, hypoxic fraction (HF), and acute and chronic types of hypoxia. With this unique capability, a new therapeutic regimen will be investigated: (Specific Aim 1) investigate whether pO2 levels influence the breast cancer stem cell niche and it's subpopulations in vivo, and (Specific Aim 2) investigate how alteration of pO2 levels and the tumor hypoxic fraction by anti-angiogenic influences the size of the BCSC niche and it's subpopulations. We will use MiHMO2 measure local pO2 in breast tumors (MCF-7, MCF-7VEGF, MDA-MB-231, BT474), to categorize regions of acute or chronic hypoxia, and to identify the subset of breast cancer stem cell biomarkers associated with metastasis. With this knowledge, a dose regimen of angiogenic inhibitors will be devised to reduce the hypoxic-niche associated with metastatic BCSCs, and determine whether improved pO2 levels alter the size BCSC niche and/or the composition of BCSC subpopulations. These goals are innovative and directly address an important clinical need, which can be extended to nearly all tumor types.

Public Health Relevance

Current therapeutic regimens of angiogenic inhibitors in breast cancer patients have not increased overall survival, but instead are believed to increase tumor and tissue hypoxia, which, in turn, expand breast cancer stem cell (BCSC) populations that resist therapy and potentiate metastasis. A new imaging modality is proposed to non invasively measure tumor hypoxia and to distinguish between acute and chronic hypoxia, where the former is hypothesized to harbor a metastatic subpopulation of BCSCs. New regimens of angiogenic inhibitors will be investigated to reduce this subpopulation and distant metastasis, and thus increase overall survival.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Exploratory/Developmental Grants (R21)
Project #
5R21EB012752-02
Application #
8339882
Study Section
Developmental Therapeutics Study Section (DT)
Program Officer
Krosnick, Steven
Project Start
2011-09-30
Project End
2014-08-31
Budget Start
2012-09-01
Budget End
2014-08-31
Support Year
2
Fiscal Year
2012
Total Cost
$173,250
Indirect Cost
$29,431
Name
Purdue University
Department
Other Health Professions
Type
Schools of Public Health
DUNS #
072051394
City
West Lafayette
State
IN
Country
United States
Zip Code
47907
Verleker, Akshay Prabhu; Shaffer, Michael; Fang, Qianqian et al. (2017) Optical dosimetry probes to validate Monte Carlo and empirical-method-based NIR dose planning in the brain: publisher's note. Appl Opt 56:1131
Verleker, Akshay Prabhu; Shaffer, Michael; Fang, Qianqian et al. (2016) Optical dosimetry probes to validate Monte Carlo and empirical-method-based NIR dose planning in the brain. Appl Opt 55:9875-9888
Cao, Ning; Cao, Minsong; Chin-Sinex, Helen et al. (2014) Monitoring the effects of anti-angiogenesis on the radiation sensitivity of pancreatic cancer xenografts using dynamic contrast-enhanced computed tomography. Int J Radiat Oncol Biol Phys 88:412-8