We describe the virtual patient model for patients with deep brain stimulation (DBS) implants. Virtual patients are realistic computerized models of patients that allow medical-device companies to test new products earlier, helping the devices get to market more quickly and cheaply according to the Food and Drug Administration. We envision that the proposed new virtual patient simulator will enable radio frequency power dosimetry on patients with the DBS implant undergoing MRI. Future patients with DBS implants may profit from the proposed virtual patient by allowing for a MRI investigation instead of more invasive CT scans, since we will design a new MRI radio frequency pulse that will allow scanning patients with DBS implant. The virtual patient will be flexible and morphable to relate to neurological and psychiatric conditions, which benefit from DBS.

Public Health Relevance

The proposed research aims developing an ultimate toolset for MRI safety for patients with DBS implants. The development of such novel technology will allow unprecedented accuracy in bioelectromagnetic modeling potentially resulting in significant safety improvement of MRI brain imaging in a variety of patient populations with Deep Brain Stimulation devices, including those who suffer of motor disorders, epilepsy, depression and obsessive compulsive, as well as other neurological and psychiatric conditions.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21EB016449-01A1
Application #
8583055
Study Section
Special Emphasis Panel (NOIT)
Program Officer
Peng, Grace
Project Start
2013-08-01
Project End
2015-07-31
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
1
Fiscal Year
2013
Total Cost
$253,600
Indirect Cost
$103,600
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
Yang, Jimmy C; Papadimitriou, George; Eckbo, Ryan et al. (2015) Multi-tensor investigation of orbitofrontal cortex tracts affected in subcaudate tractotomy. Brain Imaging Behav 9:342-52
Bonmassar, Giorgio; Makris, Nikos (2014) The Virtual Patient Simulator of Deep Brain Stimulation in the Obsessive Compulsive Disorder Based on Connectome and 7 Tesla MRI Data. Cogn Int Conf Adv Cogn Technol Appl 2014:235-238
Shenton, Martha E; Kubicki, Marek; Makris, Nikos (2014) Understanding alterations in brain connectivity in attention-deficit/hyperactivity disorder using imaging connectomics. Biol Psychiatry 76:601-2