6-methoxyethylamino numonafide (MEAN) is an innovative new anti-cancer drug with potent efficacy for the treatment of hepatocellular carcinoma (HCC). However, even though MEAN offers to importantly reduce systemic toxicity compared to prior generation amonafides, systemic administration may still lead to potentially serious adverse events. Previously developed catheter-directed techniques for treatment of HCC include radioembolization with Y-90 microspheres or chemoembolization with drug-eluting beads selectively infused into the tumor vascular beds. For these approaches, local delivery affords significant reductions in systemic toxicity due to selective catheter-directed delivery. We propose the development of MEAN-eluting magnetic nanocomposites (MEAN-MNCs) consisting of embedded porous USPIO nano-clusters in a biodegradable polymer matrix to permit controlled drug release and selective transcatheter delivery to HCC. These nanocomposite drug delivery platforms offer the potential to significantly increase the efficacy of MEAN for the treatment of HCC while reducing systemic exposures via catheter-directed delivery. Through a collaborative project building upon our strengths in materials science, nanotechnology, biomedical engineering and interventional oncology, we seek to develop a powerful new approach for image-guided catheter-directed delivery of MEAN to liver tumors. This pre-clinical project will address the following Specific Aims in a well-established rat model of liver cancer:
Aim 1 : To determine the relationship between micro-fluidic MEAN-MNC synthesis protocols and resulting MEAN loading, release kinetics, and magnetic resonance imaging (MRI) properties.
Aim 2 : To compare a) tumor responses following transcatheter infusion of MEAN-MNCs and IV administration of MEAN and b) MRI measurements of MEAN-MNC delivery to the elicited response.

Public Health Relevance

We propose the development of MEAN-eluting magnetic nanocomposite (MEAN-MNC) for catheter-directed drug delivery to HCC. A selectively targeted drug delivery system will offer importantly benefits, prolonging exposure of tumor tissues to the drug and localizing exposure to the targeted tumor tissues (rather than tissues throughout the body) thus significantly reducing side effects.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21EB017986-01
Application #
8624410
Study Section
Developmental Therapeutics Study Section (DT)
Program Officer
Tucker, Jessica
Project Start
2014-01-15
Project End
2015-12-31
Budget Start
2014-01-15
Budget End
2014-12-31
Support Year
1
Fiscal Year
2014
Total Cost
$193,125
Indirect Cost
$68,125
Name
Northwestern University at Chicago
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
005436803
City
Chicago
State
IL
Country
United States
Zip Code
60611
Lee, Joonseok; Gordon, Andrew C; Kim, Hacksung et al. (2016) Targeted multimodal nano-reporters for pre-procedural MRI and intra-operative image-guidance. Biomaterials 109:69-77
Zhao, Ken; Cho, Soojeong; Procissi, Daniel et al. (2016) Non-invasive monitoring of branched Au nanoparticle-mediated photothermal ablation. J Biomed Mater Res B Appl Biomater :
Jeon, Min Jeong; Gordon, Andrew C; Larson, Andrew C et al. (2016) Transcatheter intra-arterial infusion of doxorubicin loaded porous magnetic nano-clusters with iodinated oil for the treatment of liver cancer. Biomaterials 88:25-33
Kim, Dong-Hyun; Li, Weiguo; Chen, Jeane et al. (2016) Multimodal Imaging of Nanocomposite Microspheres for Transcatheter Intra-Arterial Drug Delivery to Liver Tumors. Sci Rep 6:29653
Park, Wooram; Park, Sin-Jung; Cho, Soojeong et al. (2016) Intermolecular Structural Change for Thermoswitchable Polymeric Photosensitizer. J Am Chem Soc 138:10734-7
Park, Wooram; Chen, Jeane; Cho, Soojeong et al. (2016) Acidic pH-Triggered Drug-Eluting Nanocomposites for Magnetic Resonance Imaging-Monitored Intra-arterial Drug Delivery to Hepatocellular Carcinoma. ACS Appl Mater Interfaces 8:12711-9
Chen, Jeane; White, Sarah B; Harris, Kathleen R et al. (2015) Poly(lactide-co-glycolide) microspheres for MRI-monitored delivery of sorafenib in a rabbit VX2 model. Biomaterials 61:299-306
Kim, Dong-Hyun; Chen, Jeane; Omary, Reed A et al. (2015) MRI visible drug eluting magnetic microspheres for transcatheter intra-arterial delivery to liver tumors. Theranostics 5:477-88
Kim, Dong-Hyun; Larson, Andrew C (2015) Deoxycholate bile acid directed synthesis of branched Au nanostructures for near infrared photothermal ablation. Biomaterials 56:154-64
Kim, D-H; Choy, T; Huang, S et al. (2014) Microfluidic fabrication of 6-methoxyethylamino numonafide-eluting magnetic microspheres. Acta Biomater 10:742-50

Showing the most recent 10 out of 11 publications