Venous thrombosis (VT) is among the most prevalent medical problems today with an estimated annual incidence of approximately 1 million cases in the United States. Despite best medical therapy, there is often incomplete resolution of the DVT leading to fibrotic changes that clinically manifest as post-thrombotic syndrome (PTS). Up to 60% of DVT patients develop PTS, which increases the risk for DVT recurrence and can severely impact the quality of life causing chronic venous insufficiency and, at end stage, venous ulcers. We propose to develop endovascular catheters with flexible electrode arrays to deliver tunable non-thermal, low-voltage, pulsed electric fields (i.e., irreversible electroporatio (IRE)) to venous thrombus to prevent fibrotic changes so that enhanced physiologic breakdown of the clot can occur. Successful non-thermal ablation of the DVT cells may lead to complete physiologic resolution of the thrombus, decreasing the incidence of PTS. We propose to optimize intravascular non-thermal IRE using simple electrodes in a realistic 3D bioprinted thrombosed vessel-on-a-chip model (Aim 1). Using these IRE parameters, we will prototype catheters with flexible electrodes and test them in the thrombosed vessel-on-a-chip model (Aim 2) and in vivo in a rat DVT model (Aim 3). Successful completion of this study will show that pulsed, non-thermal IRE delivered by catheters coated with flexible electronics can prevent clot organization in a minimally invasive manner.

Public Health Relevance

Fibrotic changes in venous thrombosis reduce the efficacy of anticoagulation therapy and catheter directed interventions leading to post-thrombotic syndrome (PTS). We propose to develop catheters containing flexible electronics to deliver non-thermal, low voltage electric fields to ablate the cells of the venous thrombus to prevent fibrosis, leaving the clot susceptible to physiological degradation.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21EB021148-01A1
Application #
9055536
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Sastre, Antonio
Project Start
2016-03-01
Project End
2018-01-31
Budget Start
2016-03-01
Budget End
2017-01-31
Support Year
1
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Mayo Clinic, Arizona
Department
Type
DUNS #
153665211
City
Scottsdale
State
AZ
Country
United States
Zip Code
85259
Khurana, Aditya; Hangge, Patrick T; Albadawi, Hassan et al. (2018) The Use of Transarterial Approaches in Peripheral Arteriovenous Malformations (AVMs). J Clin Med 7:
Miri, Amir K; Nieto, Daniel; Iglesias, Luis et al. (2018) Microfluidics-Enabled Multimaterial Maskless Stereolithographic Bioprinting. Adv Mater 30:e1800242
Hangge, Patrick T; Gupta, Nikhil; Khurana, Aditya et al. (2018) Degree of Left Renal Vein Compression Predicts Nutcracker Syndrome. J Clin Med 7:
Adler, Cameron; Hangge, Patrick T; Albadawi, Hassan et al. (2018) Multi-Detector Computed Tomography Imaging Techniques in Arterial Injuries. J Clin Med 7:
Liu, Wanjun; Zhong, Zhe; Hu, Ning et al. (2018) Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments. Biofabrication 10:024102
Lobo, Anderson Oliveira; Afewerki, Samson; de Paula, Mirian Michele Machado et al. (2018) Electrospun nanofiber blend with improved mechanical and biological performance. Int J Nanomedicine 13:7891-7903
Pershad, Yash; Hangge, Patrick T; Albadawi, Hassan et al. (2018) Social Medicine: Twitter in Healthcare. J Clin Med 7:
Hangge, Patrick; Rotellini-Coltvet, Lisa; Deipolyi, Amy R et al. (2017) Paget-Schroetter syndrome: treatment of venous thrombosis and outcomes. Cardiovasc Diagn Ther 7:S285-S290
Zhang, Yu Shrike; Santiago, Grissel Trujillo-de; Alvarez, Mario Moisés et al. (2017) Expansion Mini-Microscopy: An Enabling Alternative in Point-of-Care Diagnostics. Curr Opin Biomed Eng 1:45-53
Hangge, Patrick; Stone, Jonathan; Albadawi, Hassan et al. (2017) Hemostasis and nanotechnology. Cardiovasc Diagn Ther 7:S267-S275

Showing the most recent 10 out of 38 publications