This project investigates continuous powering of leadless cardiac pacemakers by conversion of mechanical energyofthehearttoelectricalenergy.Thisenergyconversionprocessiscalledvibrationenergyharvesting. The central element in piezoelectric vibration energy harvesters (EHs) is a piezoelectric structure. The structure resonates in response to the ambient oscillations, and its mechanical oscillations are converted to electricalenergythroughthepiezoelectricphenomenon.Theamountsofenergyproducedbyvibrationenergy harvestingaretypicallyintheorderofmicrowatts.IfEHsareusedinsteadofbatteriestopowerasystem,they willbepermanentregenerativepowersourcesandwillnotneedreplacement.ThefactthatEHsarepermanent power sources is instrumental for leadless pacemakers. Unlike conventional pacemakers, leadless pacemakerscannotbeextractedfromtheheartwhentheirbatteriesdeplete.Thusafteraboutsevenyearsa new leadless pacemaker must be implanted in the heart which occupies even further ventricular space. We haveshownthatanEHcanbedevelopedtoregenerativelypowertheconventionalpacemakersbyconversion of heart beat induced vibrations to electricity. This could eliminate the need for periodic pacemaker replacement surgeries. Leadless pacemakers are implanted in the heart and are thus substantially smaller thanconventionalpacemakers.ThissizelimitdemandedminiatureEHs. Our preliminary studies show that vibration EHs can have larger power density than the leadless pacemaker batteries. Using an EH instead of a battery will not only result in potentially permanent leadless pacemakers butalsoenablesaddingmorefunctionstothepacemaker.Thisprojectinvolvessystematicmodeling,design, optimization, fabrication, and testing of a number of EH designs for leadless pacemakers. Since the typical shapeofaleadlesspacemakeriscylindrical,theshapeoftheEHelementshouldbethree-dimensional.This sets the EH designs in this project aside from the majority of the EH in the literature, which are 2D. The investigated EHs are divided into two large categories of linear and nonlinear EHs. Nonlinear EHs are more advanced and more complicated. If properly designed, nonlinear EHs can be very robust to heart rate variations. The proposed linear EH is a fan-folded structure composed of multiple linked beams clamped at one end and free at the other end. We use thermal and magnetic buckling to induce nonlinearity in the nonlinear EH. Development of electromechanical models that can accurately predict the response of the EH designs is a major goal of this project. These models will be used to optimally design the miniature EHs. Fabrication and experimental testing of each EH design (through in vitro and animal tests) will both evaluate themodelsandcalibratetheperformanceoftheEHs.Theprojectalsoincludesextensivereliabilityanalysesto ensurethelonglifetimeoftheEHandtoascertainsufficientpowerproductionoftheEHdespitevariationsof heartrateandheartcontractilityamongpatients.

Public Health Relevance

Development of energy harvesters for powering leadless pacemakers from myocardial motion Leadless pacemakers are the new generation of cardiac pacemakers that are implanted in the heart. This project investigates continuous powering of leadless cardiac pacemakers by conversion of mechanical energy of the heart to electrical energy. We design, study, and fabricate novel piezoelectric devices that are integrated into the pacemaker and generate power when the heart motion shakes the device.

National Institute of Health (NIH)
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Exploratory/Developmental Grants (R21)
Project #
Application #
Study Section
Bioengineering, Technology and Surgical Sciences Study Section (BTSS)
Program Officer
Wolfson, Michael
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
State University of New York at Buffalo
Engineering (All Types)
Biomed Engr/Col Engr/Engr Sta
United States
Zip Code
Ansari, M H; Karami, M Amin (2018) A sub-cc nonlinear piezoelectric energy harvester for powering leadless pacemakers. J Intell Mater Syst Struct 29:438-445
Ansari, M H; Karami, M Amin (2017) Experimental investigation of fan-folded piezoelectric energy harvesters for powering pacemakers. Smart Mater Struct 26:
Galbier, Antonio C; Karami, M Amin (2017) Using an elastic magnifier to increase power output and performance of heart-beat harvesters. Smart Mater Struct 26: