This proposal outlines the development of a fundamentally new optogenetic technology capable of flexibly manipulating the activity of thousands of neurons contributing to the dynamic activity of distributed neural circuits with single neuron resolution. No method that currently exists even remotely meets the need of flexible, selective control of thousands of neurons distributed across large volumes of the brain. Filling this methodological gap is a central research objective of the BRAIN Initiative, because doing so will transform our ability to investigate how the nervous system encodes, processes, utilizes, stores, and retrieves information. The overall objective for this application is to acquire critical structural knowledge of photoactive states of a red-shifted channelrhodopsin and use these to engineer a photoselectable channel prototype that demonstrates the potential of our approach for future development in behaving animals. This would allow opsin-expressing neurons to be flexibly selected, activated, and deselected with light. By leveraging new structural knowledge, we anticipate that we can develop a fundamentally new approach to optogenetics that takes us beyond genetically targeted control and into an era of functionally targeted, flexible control of any neural ensemble.
The aims of our research are to obtain the first atomic structures of red-shifted channelrhodopsin mutants in three channel states, engineer a three-state ReaChR mutant with high open conductance and optimized action spectra, and demonstrate reversible photoselective control of neurons in vivo with PReaChR prototypes. We anticipate that completion of these aims will yield the following expected outcomes. First, it will produce new knowledge of the underlying structural transformations between channelrhodopsin photostates that will enable efficient computational design of photoselectable optogenetic tools. Second, it will produce the first examples of photoselective channelrhodopsins useful for neural excitation. Third, it will assess the utility of these new opsins for flexible control of distributed sets of neurons. Collectively, these will provide a roadmap to extending the transformative new trait of photoselectabilty to a wide range of existing optogenetic tools for excitation, inhibition and modulation of neural activity. Further research in this direction should ultimately enable flexible control of spatially complex distributions of neurons in head-fixed and freely moving animals during behavior, a key to furthering our understanding of the intricate neural dynamics that underlie our thoughts, feeling, and actions and how circuit dynamics are disrupted by neurological disorders.

Public Health Relevance

The ability to flexibly control patterns of activity in distributed neural circuits with single-cell precision would transform neuroscience. This grant aims to develop a new approach to optogenetic selection and activation of neurons through structure-guided protein engineering. The technology developed by this proposal has potential to enable entirely new classes of research into neural dynamics in health and disease.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Exploratory/Developmental Grants (R21)
Project #
5R21EY027620-02
Application #
9360611
Study Section
Special Emphasis Panel (ZEY1)
Program Officer
Wujek, Jerome R
Project Start
2016-09-30
Project End
2018-07-31
Budget Start
2017-08-01
Budget End
2018-07-31
Support Year
2
Fiscal Year
2017
Total Cost
Indirect Cost
Name
University of Southern California
Department
Type
Schools of Arts and Sciences
DUNS #
072933393
City
Los Angeles
State
CA
Country
United States
Zip Code
90033