The airway epithelium of the mammalian lung develops in the presence of exogenous fluid forces exerted from fetal breathing movements and peristaltic contraction of the surrounding smooth muscle. Defects in the mechanical environment of the thoracic cavity, including those due to congenital diaphragmatic hernia or oligohydramnios, can lead to pulmonary hypoplasia and respiratory failure after birth. Although several major biochemical signals, including fibroblast growth factor 10 (FGF10), have been identified in the control of airway branching morphogenesis, the signaling defects resulting from mechanical perturbations are unclear. Here, we propose to use microfluidic approaches to replicate the mechanical environment of the fetal chest cavity and explore effects from fluid pressure, volume, and flow on development of embryonic mouse lung explants. We will combine these microfluidic approaches with timelapse imaging of lungs explanted from transgenic reporter mice, particle imaging velocimetry analysis of the fluid flow within the airways, and molecular analysis of mechanotransductive signaling in the regulation of the FGF10 signaling axis.
In Specific Aim 1, we will determine how static transmural pressure and luminal fluid volume regulate branching of the airway epithelium, development of the mesenchyme, and expression of FGF10 and its known regulators. We will also quantify mechanical regulation of proliferation, apoptosis, and cell shape changes in the epithelium, mesenchyme, and mesothelium.
In Specific Aim 2, we will mimic the pressure changes that result from fetal breathing movements and quantify the effects of these dynamic changes on morphogenesis, gene expression, and fluid transport within the developing lung. This work will isolate the effects of pressure, volume, and flow and define precisely how each contributes to morphogenesis of the airways and their surrounding mesenchyme at both the cellular and molecular levels. We expect that this model system will open new avenues of investigation for identifying medical treatments to combat pressure-induced diseases such as fetal pulmonary hypoplasia.

Public Health Relevance

Development of the lung requires precisely tuned signaling to ensure breathing of air immediately after birth. Practice fetal breathing movements are necessary for proper lung development, and defects in these mechanical changes lead to pulmonary hypoplasia, the most common cause of neonatal death in the first week after birth. Here we present an innovative model system to replicate the mechanical changes induced within the developing lungs of embryonic mice in order to define how mechanical stresses regulate molecular signaling to affect lung development, which will enable future definition of therapeutic targets to treat fetal lung disease.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21HL118532-01A1
Application #
8636154
Study Section
Development - 1 Study Section (DEV1)
Program Officer
Lin, Sara
Project Start
2014-02-18
Project End
2016-01-31
Budget Start
2014-02-18
Budget End
2015-01-31
Support Year
1
Fiscal Year
2014
Total Cost
$218,138
Indirect Cost
$83,138
Name
Princeton University
Department
Engineering (All Types)
Type
Schools of Engineering
DUNS #
002484665
City
Princeton
State
NJ
Country
United States
Zip Code
08544
Pang, Mei-Fong; Siedlik, Michael J; Han, Siyang et al. (2016) Tissue Stiffness and Hypoxia Modulate the Integrin-Linked Kinase ILK to Control Breast Cancer Stem-like Cells. Cancer Res 76:5277-87
Navis, Adam; Nelson, Celeste M (2016) Pulling together: Tissue-generated forces that drive lumen morphogenesis. Semin Cell Dev Biol 55:139-47
Tzou, Daniel; W Spurlin 3rd, James; Pavlovich, Amira L et al. (2016) Morphogenesis and morphometric scaling of lung airway development follows phylogeny in chicken, quail, and duck embryos. Evodevo 7:12
Varner, Victor D; Nelson, Celeste M (2016) Computational models of airway branching morphogenesis. Semin Cell Dev Biol :
Piotrowski-Daspit, Alexandra S; Tien, Joe; Nelson, Celeste M (2016) Interstitial fluid pressure regulates collective invasion in engineered human breast tumors via Snail, vimentin, and E-cadherin. Integr Biol (Camb) 8:319-31
Siedlik, Michael J; Varner, Victor D; Nelson, Celeste M (2016) Pushing, pulling, and squeezing our way to understanding mechanotransduction. Methods 94:4-12
Nerger, Bryan A; Siedlik, Michael J; Nelson, Celeste M (2016) Microfabricated tissues for investigating traction forces involved in cell migration and tissue morphogenesis. Cell Mol Life Sci :
Nelson, Celeste M (2016) On Buckling Morphogenesis. J Biomech Eng 138:021005
Cichon, Magdalena A; Nelson, Celeste M; Radisky, Derek C (2015) Regulation of epithelial-mesenchymal transition in breast cancer cells by cell contact and adhesion. Cancer Inform 14:1-13
Kim, Hye Young; Pang, Mei-Fong; Varner, Victor D et al. (2015) Localized Smooth Muscle Differentiation Is Essential for Epithelial Bifurcation during Branching Morphogenesis of the Mammalian Lung. Dev Cell 34:719-26

Showing the most recent 10 out of 15 publications