Late gadolinium enhancement (LGE) cardiac MRI plays an important role in diagnosis and treatment of myocardial diseases. It is the clinical "gold standard" in for non-invasive myocardial tissue characterization. Assessment of presence/absence, location, size and pattern of myocardial scar using LGE MRI is often the only non-invasive means of accurately diagnosing and differentiating various forms of non-ischemic cardiomyopathy, including myocarditis, arrhythmogenic right ventricular dysplasia, amyloidosis, and sarcoidosis. LGE MRI also plays an increasing role in guiding catheter ablations, a widely used treatment procedure for ventricular tachycardia (VT) and recurrent ICD therapies. For this procedure, the assessment of myocardial scar location, size and transmurality provided by LGE MRI allows more accurate identification of arrhythmogenic substrate and ablation sites, thereby potentially decreasing procedure time and increasing success rate. Despite the important role of LGE MRI, many of the patients do not undergo cardiac MRI due to prior implantation of cardiac devices. Recent reports suggest that MRI of patients with implanted devices can be performed safely for most patients whose rhythms are not device dependent. The diagnostic value of the LGE images for these patients, however, is often severely limited by significant imaging artifacts that arise from the device generator, a metal box that is implanted predominantly on the left side of the patient's chest. The device generator results in multi-kHz off-resonance within myocardial tissue and typically causes extremely bright signal artifacts, making scar assessment impossible in these affected regions. Herein, we propose hypotheses, technical innovations, and clinical evaluation of a new wideband multi-spectral LGE MRI technique that can be used routinely to significantly reduce LGE imaging artifacts in patients with implanted cardiac devices. Completion of the project will result in the clinical deployment of a set of MRI pulse sequences and reconstruction methods for LGE imaging and successful validation in a cohort of patients with cardiac devices.

Public Health Relevance

Late gadolinium enhancement (LGE) cardiac MRI plays an important role in diagnosis and treatment of myocardial diseases. However, LGE MRI is severely limited by presence of implanted cardiac devices. The current proposal develops novel MR imaging techniques that can potentially enable more reliable and better quality LGE MRI for patients with cardiac devices.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21HL118533-01A1
Application #
8583724
Study Section
Medical Imaging Study Section (MEDI)
Program Officer
Evans, Frank
Project Start
2013-08-19
Project End
2015-05-31
Budget Start
2013-08-19
Budget End
2014-05-31
Support Year
1
Fiscal Year
2013
Total Cost
$183,260
Indirect Cost
$64,260
Name
University of California Los Angeles
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095