? Each year, a new influenza strain spreads across the nation, through cities interconnected by air and ground transportation. Consequently, there is potential for disastrous consequences, should an influenza pandemic strain emerge. In 1918, the """"""""Spanish flu"""""""" pandemic claimed over 675,000 lives in the United States, and tens of millions worldwide. Because the last was in 1969, there is mounting concern over a recurrence; and the alarming spread of the H5N1 highly pathogenic avian influenza virus among poultry in Southeast Asia only heightens this concern. Surprisingly, there is little empirical data on how influenza spreads through cities, regions, nations and across the globe. Targeted prevention strategies could, however, be informed by enhanced understanding of local and large scale patterns. We will leverage an NLM-funded automated advanced disease surveillance system (AEGIS) to empirically measure the key determinants of influenza spread.
Our first aim i s to develop models of national influenza spread to inform public health preparedness strategies for epidemic and pandemic flu. We will model the national spread of the yearly influenza epidemic using network driven methods so as to understand the impact of multivariate factors, including population movement and environmental conditions. We will map the yearly pattern of spread and identify urban hubs that represent major network pathways. We expect to identify sentinel cities that should be the focus of control strategies which could include targeted vaccination, travel advisories, and flight bans.
Our second aim i s to develop spatial models of local influenza spread in metropolitan areas to identify targets for surveillance and control. We will develop empirically based spatial models of local influenza spread across major metropolitan areas and identify recurring hotspots of risk using surveillance data. We will exploit differences in spatial patterns of infection in major metropolitan areas to evaluate geographic and demographic risk factors that drive infection in different parts of the country. For both aims, our models and methods will be implemented in the AEGIS surveillance system for real-time monitoring of influenza activity. We will develop methods for effective linkage of influenza surveillance to prevention and control strategies. These methods have broad application for disaster preparedness for events caused by both naturally-occurring and deliberate introductions of infectious agents. ? ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Library of Medicine (NLM)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21LM009263-01
Application #
7135597
Study Section
Special Emphasis Panel (ZLM1-ZH-R (M3))
Program Officer
Sim, Hua-Chuan
Project Start
2006-09-30
Project End
2008-09-29
Budget Start
2006-09-30
Budget End
2007-09-29
Support Year
1
Fiscal Year
2006
Total Cost
$253,500
Indirect Cost
Name
Children's Hospital Boston
Department
Type
DUNS #
076593722
City
Boston
State
MA
Country
United States
Zip Code
02115
Charland, K M; Brownstein, J S; Verma, A et al. (2011) Increased influenza-related healthcare utilization by residents of an urban aboriginal community. Epidemiol Infect 139:1902-8
Charland, Katia M; Brownstein, John S; Verma, Aman et al. (2011) Socio-economic disparities in the burden of seasonal influenza: the effect of social and material deprivation on rates of influenza infection. PLoS One 6:e17207
Anema, A; Freifeld, C C; Druyts, E et al. (2010) An assessment of global Internet-based HIV/AIDS media coverage: implications for United Nations Programme on HIV/AIDS' Global Media HIV/AIDS initiative. Int J STD AIDS 21:26-9
Keller, Mikaela; Blench, Michael; Tolentino, Herman et al. (2009) Use of unstructured event-based reports for global infectious disease surveillance. Emerg Infect Dis 15:689-95
Charland, K M L; Buckeridge, D L; Sturtevant, J L et al. (2009) Effect of environmental factors on the spatio-temporal patterns of influenza spread. Epidemiol Infect 137:1377-87
Dasgupta, Nabarun; Mandl, Kenneth D; Brownstein, John S (2009) Breaking the news or fueling the epidemic? Temporal association between news media report volume and opioid-related mortality. PLoS One 4:e7758
Freifeld, Clark C; Mandl, Kenneth D; Reis, Ben Y et al. (2008) HealthMap: global infectious disease monitoring through automated classification and visualization of Internet media reports. J Am Med Inform Assoc 15:150-7
Brownstein, John S; Mandl, Kenneth D (2008) Pediatric population size is associated with geographic patterns of acute respiratory infections among adults. Ann Emerg Med 52:63-8
Sturtevant, Jessica L; Anema, Aranka; Brownstein, John S (2007) The new International Health Regulations: considerations for global public health surveillance. Disaster Med Public Health Prep 1:117-21
Wieland, Shannon C; Brownstein, John S; Berger, Bonnie et al. (2007) Automated real time constant-specificity surveillance for disease outbreaks. BMC Med Inform Decis Mak 7:15

Showing the most recent 10 out of 11 publications