This proposal describes the development and optimization of novel reagents and technologies to measure and experimentally perturb growth and activity-dependent plasticity of neuronal dendrites in Drosophila central nervous system neurons in vivo and examine their outcome on long-term behavioral adaptation. These techniques effectively combine behavioral analysis on one hand with transgenic labeling of individual central nervous system neurons with visible fluorescent markers (e.g. GFP), concomitant expression of proteins of choice in these neurons, confocal microscopic imaging of neuronal dendrites, and 3D reconstruction of these dendrites using dedicated computer algorithms on the other. We use this suite of techniques to test the hypothesis that the Myb-related transcription factor Adf-1 regulates learning and memory in Drosophila by controlling structural and functional properties of neuronal dendrites, downstream of a signaling pathway driven by CaMKII, as proof of principle. Adf-1 is expressed widely in the fly nervous system including motor neurons and higher brain regions required for learning and memory, similar to reported Myb expression in the vertebrate brain. Strikingly, mutants in Adf-1 (called nalyot) are also reported to have dramatic deficits in long-term memory formation. Results obtained thus far suggest Adf-1 strongly regulates dendrite growth. Based on these observations, we propose that neuronal Adf-1, by regulating activity- dependent plasticity of neuronal dendrites, instructs cellular mechanisms that control long-term behavioral adaptation (including learning and memory). Upon conclusion, these studies should not only reveal fundamental molecular mechanisms that, through regulation of activity-dependent dendritic plasticity, control learning and memory, but also firmly establish widely useful techniques to measure structural and functional plasticity of dendrites in the context of long-term behavioral adaptation.

Public Health Relevance

The proposed project aims to develop novel genetic and imaging techniques to measure plasticity of neuronal dendrites in vivo and correlate them with behavioral changes. As proof of principle, we will use these techniques to study the role of a conserved transcription factor that controls long-term memory in Drosophila, in the regulation of dendritic architecture and long-term adaptive behavior. Upon conclusion these studies will illuminate fundamental cellular mechanisms by which gene expression programs regulate behavior and establish multiple useful technologies for future experiments.

National Institute of Health (NIH)
National Institute of Mental Health (NIMH)
Exploratory/Developmental Grants (R21)
Project #
Application #
Study Section
Molecular Neurogenetics Study Section (MNG)
Program Officer
Asanuma, Chiiko
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Emory University
Anatomy/Cell Biology
Schools of Medicine
United States
Zip Code
Vrailas-Mortimer, Alysia D; Ryan, Sarah M; Avey, Matthew J et al. (2014) p38 MAP kinase regulates circadian rhythms in Drosophila. J Biol Rhythms 29:411-26
Timmerman, Christina; Suppiah, Somu; Gurudatta, Baraka V et al. (2013) The Drosophila transcription factor Adf-1 (nalyot) regulates dendrite growth by controlling FasII and Staufen expression downstream of CaMKII and neural activity. J Neurosci 33:11916-31
Vonhoff, Fernando; Kuehn, Claudia; Blumenstock, Sonja et al. (2013) Temporal coherency between receptor expression, neural activity and AP-1-dependent transcription regulates Drosophila motoneuron dendrite development. Development 140:606-16
Freeman, Amanda; Pranski, Elaine; Miller, R Daniel et al. (2012) Sleep fragmentation and motor restlessness in a Drosophila model of Restless Legs Syndrome. Curr Biol 22:1142-8
Freeman, Amanda; Franciscovich, Amy; Bowers, Mallory et al. (2011) NFAT regulates pre-synaptic development and activity-dependent plasticity in Drosophila. Mol Cell Neurosci 46:535-47
Freeman, Amanda; Bowers, Mallory; Mortimer, Alysia Vrailas et al. (2010) A new genetic model of activity-induced Ras signaling dependent pre-synaptic plasticity in Drosophila. Brain Res 1326:15-29