Posttraumatic stress disorder (PTSD) occurs in some people after exposure to events that cause extreme fear or helplessness. The incidence of war zones worldwide and the prevalence of violence in large urban centers in the U.S. increases the likelihood of exposure to traumatizing events. Of those who survive such events, approximately 10% will develop this debilitating disorder that affects both the individual and their family. Individual patients can vary in the degree to which they present with the different symptom clusters, such that a "one size fits all" treatment is often inadequate. This individual variation may be associated with biological risk factors that increase vulnerability to the disorder or impede treatment. While both genes and environment interact to increase an individual's risk of developing PTSD, it is unclear how the underlying neurobiology is shaped by these factors to result in the observed dysregulations. PTSD is marked by impaired cortical control of the limbic system, specifically the amygdala and hippocampus. Moreover, amygdala projections modulate neuroendocrine systems, namely the hypothalamic-pituitary-adrenal (HPA) axis, which is the common pathway of the stress response. Cortisol performs important regulatory functions in these brain structures, and participates in the formation, processing, and retrieval of memories, particularly fearful ones. Furthermore, another neurobiological finding in PTSD is hyper-sensitive feedback of dexamethasone, a cortisol analogue, on the HPA axis. Although amygdala and cortisol feedback function have been studied separately in PTSD, the interaction of these two systems has not been studied in the same patients. The proposed study will provide innovative tools to tease apart the relationship between the amygdala and the HPA axis in a human clinical population. Our recent discovery of HPA axis suppression and fear dysregulation coupled with the development of new fear conditioning paradigms provides a unique opportunity to interrogate the amygdala-HPA interactions to determine aspects of the neurobiological underpinnings of the pathology related to PTSD.

Public Health Relevance

Posttraumatic stress disorder (PTSD) is a highly debilitating and complex disorder frequently comorbid with many medical and psychiatric illnesses. Understanding the neurobiological mechanisms underlying this disorder will provide improved tools for targeting symptoms that are specific to PTSD. The ultimate goal of this proposal is to combine basic psychopathology research and basic neuroscience research to inform the development of novel and effective approaches for treating PTSD, particularly in high-risk populations such as low-income, African-Americans.

National Institute of Health (NIH)
National Institute of Mental Health (NIMH)
Exploratory/Developmental Grants (R21)
Project #
Application #
Study Section
Biobehavioral Mechanisms of Emotion, Stress and Health Study Section (MESH)
Program Officer
Tuma, Farris K
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Emory University
Schools of Medicine
United States
Zip Code
Davis, Jennifer S; Fani, Negar; Ressler, Kerry et al. (2014) Attachment anxiety moderates the relationship between childhood maltreatment and attention bias for emotion in adults. Psychiatry Res 217:79-85
Jovanovic, T; Norrholm, S D; Davis, J et al. (2013) PAC1 receptor (ADCYAP1R1) genotype is associated with dark-enhanced startle in children. Mol Psychiatry 18:742-3
Jovanovic, Tanja; Sakoman, Andrea Jambrosic; Kozaric-Kovacic, Dragica et al. (2013) Acute stress disorder versus chronic posttraumatic stress disorder: inhibition of fear as a function of time since trauma. Depress Anxiety 30:217-24
Jovanovic, Tanja; Kazama, Andrew; Bachevalier, Jocelyne et al. (2012) Impaired safety signal learning may be a biomarker of PTSD. Neuropharmacology 62:695-704
Kamkwalala, Asante; Norrholm, Seth D; Poole, James M et al. (2012) Dark-enhanced startle responses and heart rate variability in a traumatized civilian sample: putative sex-specific correlates of posttraumatic stress disorder. Psychosom Med 74:153-9