Microbial opsins are light-sensitive proteins that can be expressed in specified cells via targeting promoters and turned on/off with millisecond speed, thus providing genetic and optical ('optogenetic') control of cell function with high spatial and temporal specificity. Their ability to control the electrical activity of neural circuits and confe reversible gain and loss of function of specific neuronal phenotypes allows us to study neural systems and diseases in unprecedented manner. Optogenetic research today, however, relies on a limited set of natural microbial opsins with broad activation spectra, limited ion selectivity and a narrow range of kinetics. We are proposing a novel approach to opsin engineering that capitalizes on the power of structure-guided protein engineering and directed evolution. In parallel, we will also search for novel naturally occurring opsins in niche environments. The expanded optogenetic toolkit will facilitate the investigation of neuronal circuits in health and disease.

Public Health Relevance

Brain disorders take a great toll in the US and worldwide. Progress has been limited by the availability of tools to investigate neuronal circuits with temporal and special specificity until the development of optogenetics. Because current optogenetic tools are still limited in purpose our goal is to maximize the optogenetic toolkit by providing much-needed tools for the broad neuroscience community.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21MH103824-01
Application #
8684987
Study Section
Molecular Neurogenetics Study Section (MNG)
Program Officer
Freund, Michelle
Project Start
2014-03-01
Project End
2016-02-29
Budget Start
2014-03-01
Budget End
2015-02-28
Support Year
1
Fiscal Year
2014
Total Cost
$249,750
Indirect Cost
$99,750
Name
California Institute of Technology
Department
None
Type
Schools of Arts and Sciences
DUNS #
009584210
City
Pasadena
State
CA
Country
United States
Zip Code
91125
Deverman, Benjamin E; Pravdo, Piers L; Simpson, Bryan P et al. (2016) Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol 34:204-9
Xiao, Cheng; Cho, Jounhong Ryan; Zhou, Chunyi et al. (2016) Cholinergic Mesopontine Signals Govern Locomotion and Reward through Dissociable Midbrain Pathways. Neuron 90:333-47
Skennerton, Connor T; Ward, Lewis M; Michel, Alice et al. (2015) Genomic Reconstruction of an Uncultured Hydrothermal Vent Gammaproteobacterial Methanotroph (Family Methylothermaceae) Indicates Multiple Adaptations to Oxygen Limitation. Front Microbiol 6:1425
Bedbrook, Claire N; Kato, Mihoko; Ravindra Kumar, Sripriya et al. (2015) Genetically Encoded Spy Peptide Fusion System to Detect Plasma Membrane-Localized Proteins In Vivo. Chem Biol 22:1108-21
McIsaac, R Scott; Bedbrook, Claire N; Arnold, Frances H (2015) Recent advances in engineering microbial rhodopsins for optogenetics. Curr Opin Struct Biol 33:8-15
Treweek, Jennifer B; Chan, Ken Y; Flytzanis, Nicholas C et al. (2015) Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping. Nat Protoc 10:1860-96
Yang, Bin; Treweek, Jennifer B; Kulkarni, Rajan P et al. (2014) Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell 158:945-58
McIsaac, R Scott; Engqvist, Martin K M; Wannier, Timothy et al. (2014) Directed evolution of a far-red fluorescent rhodopsin. Proc Natl Acad Sci U S A 111:13034-9
Flytzanis, Nicholas C; Bedbrook, Claire N; Chiu, Hui et al. (2014) Archaerhodopsin variants with enhanced voltage-sensitive fluorescence in mammalian and Caenorhabditis elegans neurons. Nat Commun 5:4894