The goal of this application Is to maintain transgenic knockout animal models that are unique and have high relevance to alcohol research. Alcohol-induced toxicity commonly Involves oxidative stress. Ethanol metabolism by microsomal and mitochondrial systems generates reactive oxygen species and reactive nitrogen species, and is associated with diminished glutathione (GSH) and antioxidant enzymatic activity. In addition, the accumulation of ethanol-derived aldehydes and hydroxyethyl radical serves to modify critical biological functions by forming adducts with proteins and DNA. The availability of animal models in which ethanol metabolism or antioxidant mechanisms are genetically modified will facilitate investigation of the role these enzymes and oxidative stress In diseases associated with ethanol consumption. Therefore, we propose:
Specific Aim 1 : To maintain the populations of existing mouse models in our laboratory so that they are readily available to researchers. Our current models include: a) the conventlonal7 /c(/77af, Aldhlbl, Aldh2, Cat, Cyp2e1, Adhi and Gclm single knockouts, b) the Cat/Cyp2e1 double knockout, and c) the hepatocyte-specific Gclc^^ knockout and the conditional Gclc '^floxed strain.
Specific Aim 2 : To generate (and maintain) unique additional mouse knockout models so that they are readily available to researchers. These Include: a) Cyp2e1/Adh1, Cat/Cyp2e1, Cat/Adhi and Cat/Cyp2e1/Adh1 triple knockout, b) Aldhlal/Aldhlbl, Aldh1b1/Aldh2 and the Aldh1a1/Aldh1b1/Aldh2 triple knockout strains, and c) Gclm/Cyp2e1 and Gclm/Aldhlal double knockout strains. Our overarching aim Is to make valuable transgenic animal models available to the larger research community. It is expected that enhanced access to such models will accelerate our understanding of the mechanisms underlying alcohol-Induced disease and the pathophysiological effects of acute and chronic alcohol consumption. Such knowledge would facilitate the development of more effective treatments of alcohol abuse.

Public Health Relevance

Alcohol-Induced toxicity is associated with oxidative stress resulting from ethanol metabolism that generates reactive oxygen species and Is associated with reduced glutathione (GSH). The goal of this application Is to maintain and expand animal models with genetic defects In alcohol metabolizing enzymes and In GSH synthesizing enzymes that will become available to the research community.

National Institute of Health (NIH)
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
Resource-Related Research Projects (R24)
Project #
Application #
Study Section
Special Emphasis Panel (ZAA1)
Program Officer
Jung, Kathy
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Colorado Denver
Schools of Pharmacy
United States
Zip Code
Matsumoto, Akiko; Arcaroli, John; Chen, Ying et al. (2017) Aldehyde dehydrogenase 1B1: a novel immunohistological marker for colorectal cancer. Br J Cancer 117:1537-1543
Heit, Claire; Marshall, Stephanie; Singh, Surrendra et al. (2017) Catalase deletion promotes prediabetic phenotype in mice. Free Radic Biol Med 103:48-56
Johnson, Caroline H; Athersuch, Toby J; Collman, Gwen W et al. (2017) Yale school of public health symposium on lifetime exposures and human health: the exposome; summary and future reflections. Hum Genomics 11:32
Mak, Tak W; Grusdat, Melanie; Duncan, Gordon S et al. (2017) Glutathione Primes T Cell Metabolism for Inflammation. Immunity 46:1089-1090
Rattray, Nicholas J W; Charkoftaki, Georgia; Rattray, Zahra et al. (2017) Environmental influences in the etiology of colorectal cancer: the premise of metabolomics. Curr Pharmacol Rep 3:114-125
Heit, Claire; Eriksson, Peter; Thompson, David C et al. (2016) Quantification of Neural Ethanol and Acetaldehyde Using Headspace GC-MS. Alcohol Clin Exp Res 40:1825-31
Singh, Surendra; Arcaroli, John J; Orlicky, David J et al. (2016) Aldehyde Dehydrogenase 1B1 as a Modulator of Pancreatic Adenocarcinoma. Pancreas 45:117-22
Chen, Ying; Singh, Surendra; Matsumoto, Akiko et al. (2016) Chronic Glutathione Depletion Confers Protection against Alcohol-induced Steatosis: Implication for Redox Activation of AMP-activated Protein Kinase Pathway. Sci Rep 6:29743
Nebert, Daniel W; Dong, Hongbin; Bruford, Elspeth A et al. (2016) Letter to the editor for ""Update of the human and mouse Fanconi anemia genes"". Hum Genomics 10:25
Heit, Claire; Dong, Hongbin; Chen, Ying et al. (2015) Transgenic mouse models for alcohol metabolism, toxicity, and cancer. Adv Exp Med Biol 815:375-87

Showing the most recent 10 out of 25 publications