This proposal will systematically address a fundamental and clinically relevant question: What is the function of bone marrow adipose tissue (MAT)? Adipocytes were identified in the marrow more than a century ago, but questions about their relevance to energy homeostasis have only recently surfaced. These questions coincide with emerging data indicating that adipose depots at different sites have distinct physiologic functions and play critical roles in the pathophysiology of both metabolic and skeletal disorders. In the current project we are focused on the structure and function of bone marrow adipocytes, a unique and understudied depot that we hypothesize is associated with growth, nutritional status, and skeletal remodeling. With pilot support from R24 NIDDK 84970, we developed an integrated and multidisciplinary research team, explored new animal and human models, applied new techniques in metabolomics, developed a virtual laboratory for investigator integration, and used innovative imaging techniques for both MAT and bone micro- architecture. We also demonstrated that: 1) marrow adipocytes have unique cell surface markers that distinguish them from adipocytes in other depots;2) MAT is dynamic, with the capacity to expand or contract in response to developmental and nutritional cues such as calorie restriction; 3) adiponectin expression and basal lipolytic rates are higher in marrow adipocytes than in adipocytes from other depots;4) MAT is closely linked to bone remodeling and bone mass in humans. Most importantly, in a translational model of chronic calorie restriction, anorexia nervosa (AN), we showed that MAT was markedly increased compared to young age-matched controls and was inversely related to bone mass and the size of other fat depots. Therefore, we propose specific aims which will test the central hypothesis that MAT is an important modulator of skeletal remodeling and is fully integrated in energy homeostasis. The three aims are:1) Determine the function of MAT relative to bone remodeling;2) Assess the metabolic status of MAT and contrast this with other adipose depots;3) Define the adipocyte progenitor(AP) and its differentiation in bone marrow, and identify the genetic, molecular, biochemical and hormonal profile of MAT.

Public Health Relevance

Excess MAT is associated with greater fracture risk and low bone mass. Understanding the function of marrow adipocytes and their relationship to skeletal remodeling will help identify patients at risk for fractures in disorders like anorexia nervosa, diabetes mellitus, multiple myeloma and age-related osteoporosis. Data generated from this project also holds promise for new therapeutic approaches to preserve bone mass.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Resource-Related Research Projects (R24)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-J (M1))
Program Officer
Malozowski, Saul N
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Maine Medical Center
United States
Zip Code
Lima, Josivan Gomes; Nobrega, Lucia Helena C; Lima, Natalia Nobrega et al. (2017) Normal bone density and trabecular bone score, but high serum sclerostin in congenital generalized lipodystrophy. Bone 101:21-25
Plummer, Jason; Park, Miri; Perodin, Frantz et al. (2017) Methionine-Restricted Diet Increases miRNAs That Can Target RUNX2 Expression and Alters Bone Structure in Young Mice. J Cell Biochem 118:31-42
Veldhuis-Vlug, Annegreet G; Rosen, Clifford J (2017) Mechanisms of marrow adiposity and its implications for skeletal health. Metabolism 67:106-114
Reagan, Michaela R; Lian, Jane B; Rosen, Clifford J et al. (2017) A perspective on malignancy in the marrow. J Cell Physiol 232:3218-3220
Fan, Yi; Hanai, Jun-Ichi; Le, Phuong T et al. (2017) Parathyroid Hormone Directs Bone Marrow Mesenchymal Cell Fate. Cell Metab 25:661-672
Bornstein, Sheila; Moschetta, Michele; Kawano, Yawara et al. (2017) Metformin Affects Cortical Bone Mass and Marrow Adiposity in Diet-Induced Obesity in Male Mice. Endocrinology 158:3369-3385
Soley, Luna; Falank, Carolyne; Reagan, Michaela R (2017) MicroRNA Transfer Between Bone Marrow Adipose and Multiple Myeloma Cells. Curr Osteoporos Rep 15:162-170
Rendina-Ruedy, Elizabeth; Rosen, Clifford J (2017) Bone-Fat Interaction. Endocrinol Metab Clin North Am 46:41-50
Horowitz, Mark C; Berry, Ryan; Holtrup, Brandon et al. (2017) Bone marrow adipocytes. Adipocyte 6:193-204
McDonald, Michelle M; Reagan, Michaela R; Youlten, Scott E et al. (2017) Inhibiting the osteocyte-specific protein sclerostin increases bone mass and fracture resistance in multiple myeloma. Blood 129:3452-3464

Showing the most recent 10 out of 98 publications