This proposal brings together an interdisciplinary team of collaborators to address a major challenge: to achieve clinical utility of patient-specific induced pluripotent stem cells (iPSCs) for blood diseases. Our ultimate goal is to differentiate customized iPSCs into hematopoietic stem and progenitor cells to accurately model human blood diseases for research into disease mechanisms, and as a platform for treating patients with blood diseases. To achieve this, this proposal aims to discover the developmental pathways and biomechanical principles that drive the formation of hematopoietic stem cells (HSCs) in embryos, and will screen for morphogens and chemicals that promote hematopoietic maturation in vitro. We will take several novel and integrated approaches including: 1) application of predictive computational algorithms to gene expression data from highly purified embryonic HSC populations to discover the gene networks that direct hematopoietic and lymphoid development;2) Screens in zebrafish embryos and murine and human pluripotent stem cells to discover novel chemical and biological regulators of HSCs;3) bioengineered platforms for production of hematopoietic stem and progenitor populations, applying biomechanical forces to mimic the embryonic microenvironment;4) derivation of iPSC from patients with Primary Immune Deficiency to correlate genotype with lymphoid phenotypes and to test strategies for gene repair through an "in vitro clinical trial";and ultimately, 5) to derive transgene-free clinical-grade pluripotent stem cells, and develop protocols for differentiation of hematopoietic populations at clinical scale. Success in generating engraftable, genetically unperturbed HSC would be a significant breakthrough that would enhance the utility of iPSC for modeling hematopoietic disease and establish a translational platform for combining gene repair with HSC transplantation therapy.

Public Health Relevance

Patient-derived induced pluripotent stem cells (iPSCs) represent an important new platform for research and therapy, but discovering novel mechanisms, developing drug screens, and delivering cells will hinge on our capacity to differentiate iPSC into relevant hematopoietic stem and progenitor cells (HSCs/ HSPCs), which remains a major hurdle. This proposal aims to realize the translational potential of iPSCs by discovering how to direct the differentiation of HSCs/ HSPCs in vitro.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Resource-Related Research Projects (R24)
Project #
5R24DK092760-03
Application #
8520297
Study Section
Special Emphasis Panel (ZDK1-GRB-J (M1))
Program Officer
Bishop, Terry Rogers
Project Start
2011-09-19
Project End
2014-07-31
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
3
Fiscal Year
2013
Total Cost
$1,193,861
Indirect Cost
$507,734
Name
Children's Hospital Boston
Department
Type
DUNS #
076593722
City
Boston
State
MA
Country
United States
Zip Code
02115
Arora, Natasha; Wenzel, Pamela L; McKinney-Freeman, Shannon L et al. (2014) Effect of developmental stage of HSC and recipient on transplant outcomes. Dev Cell 29:621-8
Morris, Samantha A; Cahan, Patrick; Li, Hu et al. (2014) Dissecting engineered cell types and enhancing cell fate conversion via CellNet. Cell 158:889-902
Hagedorn, Elliott J; Durand, Ellen M; Fast, Eva M et al. (2014) Getting more for your marrow: boosting hematopoietic stem cell numbers with PGE2. Exp Cell Res 329:220-6
Kumar, Roshan M; Cahan, Patrick; Shalek, Alex K et al. (2014) Deconstructing transcriptional heterogeneity in pluripotent stem cells. Nature 516:56-61
Cahan, Patrick; Li, Hu; Morris, Samantha A et al. (2014) CellNet: network biology applied to stem cell engineering. Cell 158:903-15
Doulatov, Sergei; Vo, Linda T; Chou, Stephanie S et al. (2013) Induction of multipotential hematopoietic progenitors from human pluripotent stem cells via respecification of lineage-restricted precursors. Cell Stem Cell 13:459-70
Tulpule, Asmin; Kelley, James M; Lensch, M William et al. (2013) Pluripotent stem cell models of Shwachman-Diamond syndrome reveal a common mechanism for pancreatic and hematopoietic dysfunction. Cell Stem Cell 12:727-36
Cherry, Anne B C; Daley, George Q (2013) Reprogrammed cells for disease modeling and regenerative medicine. Annu Rev Med 64:277-90
Cahan, Patrick; Daley, George Q (2013) Origins and implications of pluripotent stem cell variability and heterogeneity. Nat Rev Mol Cell Biol 14:357-68
Cesana, Marcella; Daley, George Q (2013) Deciphering the rules of ceRNA networks. Proc Natl Acad Sci U S A 110:7112-3

Showing the most recent 10 out of 13 publications