Obesity-linked insulin resistance and type 2 diabetes are intimately linked to adipocyte dysfunction, increased adipocyte lipolysis, and lipid accretion in tissues other than adipose. In obesity, the hypertrophied adipocyte is not able to properiy store excess fatty acids, the rate of lipolysis is increased, and these lipids deposit in other tissues where they hamper insulin action. Inhibiting obesity-linked adipocyte lipolysis can improve insulin sensitivity. All enzymes involved in adipocyte lipolysis belong to the serine hydrolase family. Despite their importance in fat cell physiology, the majority of serine hydrolases have not been studied. Serine hydrolases (SHs) are a key enzyme family involved in metabolism and adipocyte function, v /here they contribute to lipolysis, lipogenesis, and lipid uptake. Yet, more than 50% ofthe 120+ human serine hydrolases, including some that have been genetically linked to human disease, remain unannotated, have no known function or physiological substrates, and most lack inhibitors to aid in their characterization and therapeuti validation. Because individual SHs already constitute targets for drugs that treat metabolic disease, it is reasonable to hypothesize that important additional drug targets will be found among the numerous SHs that remain uncharacterized. Discerning which of these unannotated SHs are relevant in adipocyte function and which may serve as therapeutic targets for obesity-diabetes is a very complex problem. The critically important research challenge that this project addresses is the identification and therapeutic validation of pooriy annotated metabolic serine hydrolases that play key roles in adipocyte function. Our multidisciplinary team will achieve this goal by combining cutting-edge chemoproteomic and metabolomics methods with deep biological expertise in obesity and type 2 diabetes. Specifically, we intend to globally identify and assess the therapeutic potential of unannotated SHs active in adipocytes and whose activity is modulated in physiologic conditions and in obesity-diabetes. Some of these enzymes may be new targets for metabolic disease. In the process, we will create first-in-class chemical probes and genetic models to study adipocyte SHs that will be distributed to the larger research community.

Public Health Relevance

This project will combine expertise from multiple scientific fields to establish the function in fat cells of a key class of enzymes that is poorly studied. Som of these uncharacterized enzymes may represent new drug targets to treat obesity and type 2 diabetes.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Resource-Related Research Projects (R24)
Project #
5R24DK099810-02
Application #
8721954
Study Section
Special Emphasis Panel (ZDK1-GRB-C (M2))
Program Officer
Haft, Carol R
Project Start
2013-08-15
Project End
2017-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
2
Fiscal Year
2014
Total Cost
$1,089,929
Indirect Cost
$456,595
Name
Scripps Research Institute
Department
Type
DUNS #
781613492
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Dominguez, Eduardo; Galmozzi, Andrea; Chang, Jae Won et al. (2014) Integrated phenotypic and activity-based profiling links Ces3 to obesity and diabetes. Nat Chem Biol 10:113-21
Kok, Bernard P; Saez, Enrique (2014) Activating PI3-kinase to dampen inflammation. Chem Biol 21:917-8
Inloes, Jordon M; Hsu, Ku-Lung; Dix, Melissa M et al. (2014) The hereditary spastic paraplegia-related enzyme DDHD2 is a principal brain triglyceride lipase. Proc Natl Acad Sci U S A 111:14924-9
Galmozzi, Andrea; Dominguez, Eduardo; Cravatt, Benjamin F et al. (2014) Application of activity-based protein profiling to study enzyme function in adipocytes. Methods Enzymol 538:151-69