Our proposed research for this partnership grant is to develop a long-term implantable retinal stimulator for patients blinded by outer retinal degenerations. Using technologies developed by the Alfred E. Mann group of companies over the past 30 years for implantable stimulators, we will develop a chronic retinal stimulator and associated external hardware for use both in research and as a clinical device. In order to achieve this goal, several areas of research are still needed. In this bioengineering research partnership, academia will collaborate with industry to accomplish the basic research necessary to make a chronic retinal prosthesis a reality. Areas of basic research that we will focus on include: electrode geometry and electrode material selection, surgical attachment of the retinal implant, low power electronic circuit design, and hermetic packaging. Each of these areas needs additional research for the creation of an optimal chronic retinal prosthesis which will enable persons blinded by outer retinal degeneration to regain the most important loss they have suffered--the loss of mobility.
The aim of this five-year proposal is to complete the design and manufacture of a retinal prosthesis and associated external hardware and tests it chronically in animals, so that an investigational device application can be made to the FDA in preparation for a clinical trial.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Resource-Related Research Projects (R24)
Project #
5R24EY012893-04
Application #
6606940
Study Section
Special Emphasis Panel (ZRG1-VISB (09))
Program Officer
Dudley, Peter A
Project Start
2000-07-01
Project End
2005-05-31
Budget Start
2003-06-01
Budget End
2004-05-31
Support Year
4
Fiscal Year
2003
Total Cost
$2,407,256
Indirect Cost
Name
Second Sight Medical Products, Inc.
Department
Type
DUNS #
086470742
City
Sylmar
State
CA
Country
United States
Zip Code
91342
Dorn, Jessy D; Ahuja, Ashish K; Caspi, Avi et al. (2013) The Detection of Motion by Blind Subjects With the Epiretinal 60-Electrode (Argus II) Retinal Prosthesis. JAMA Ophthalmol 131:183-9
Ahuja, Ashish Kishore; Behrend, Matthew R (2013) The Argusâ„¢ II retinal prosthesis: factors affecting patient selection for implantation. Prog Retin Eye Res 36:1-23
Horsager, Alan; Boynton, Geoffrey M; Greenberg, Robert J et al. (2011) Temporal interactions during paired-electrode stimulation in two retinal prosthesis subjects. Invest Ophthalmol Vis Sci 52:549-57
Sekirnjak, Chris; Jepson, Lauren H; Hottowy, Pawel et al. (2011) Changes in physiological properties of rat ganglion cells during retinal degeneration. J Neurophysiol 105:2560-71
Horsager, Alan; Greenberg, Robert J; Fine, Ione (2010) Spatiotemporal interactions in retinal prosthesis subjects. Invest Ophthalmol Vis Sci 51:1223-33
Horsager, Alan; Greenwald, Scott H; Weiland, James D et al. (2009) Predicting visual sensitivity in retinal prosthesis patients. Invest Ophthalmol Vis Sci 50:1483-91
Nanduri, D; Humayun, M S; Greenberg, R J et al. (2008) Retinal prosthesis phosphene shape analysis. Conf Proc IEEE Eng Med Biol Soc 2008:1785-8
Chen, Shih-Jen; Mahadevappa, Manjunatha; Roizenblatt, Roberto et al. (2006) Neural responses elicited by electrical stimulation of the retina. Trans Am Ophthalmol Soc 104:252-9
Zhou, David D; Greenberg, Robert J (2005) Microsensors and microbiosensors for retinal implants. Front Biosci 10:166-79
Weiland, James D; Humayun, Mark S (2005) A biomimetic retinal stimulating array. IEEE Eng Med Biol Mag 24:14-21

Showing the most recent 10 out of 14 publications