An interdisciplinary consortium of investigators from the Departments of Pharmacology, Ophthalmology and Biomedical Engineering at Case Western Reserve University in collaboration with the University of Cincinnati Drug Discovery Center, Washington University and the University of Pennsylvania, proposes "to increase the pace at which basic science discoveries on disease mechanisms can be translated into therapies for complex visual system disorders and disease", a stated goal of the R24 National Eye Institute (NEI) Translational Research Program on Therapy for Visual Disorders. This scientific partnership will employ its diverse scientific expertise to characterize and test potential therapies for retinal diseases in animal models by using a combination of cutting-edge physiological, chemical, analytical and imaging approaches. By screening Food and Drug Administration (FDA)-approved drugs for their ability to prevent retinal pathology in animal models that mimic Stargardt's disease, age-related macular degeneration (AMD), and retinitis pigmentosa (RP), we will accelerate drug development before testing in humans. Improving drug delivery to the eye as an integral part of these experiments will also be a high priority. Specific goals of this project are to: (1) Test FDA-approved drugs for their ability to reduce toxic levels of all-trans-retinal in the eye and prevent its condensation to harmful conjugates;(2) Evaluate analogues of FDA-approved drugs as potential lead compounds for treating retinal diseases by using approved compounds found effective and safe in animal model studies;(3) Assess the bioavailability and distribution of these agents to determine their ability to penetrate and remain in the eyes without affecting normal phototransduction and visual cycle reactions;and (4) Explore different modes of drug delivery and develop novel biodegradable polymers that provide therapeutic drug concentrations in the eyes. Ultimately, the experimental results of these interrelated aims will guide us in developing more successful therapies for patients affected by currently incurable blinding diseases.

Public Health Relevance

The number of persons who are legally blind in the USA exceeds 1.3 million with about 8-10 million aging persons who will be affected with age-related macular degeneration (AMD). Utilizing a mechanistically relevant model of Stargardts disease, we have demonstrated rapid screening to potentially repurpose a broad set of FDA approved molecules. This proposal offers a compelling opportunity to attack this grievous riisfiasfi and nthsr cnnditinn.c;inditriinn AMD.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Resource-Related Research Projects (R24)
Project #
5R24EY021126-04
Application #
8540429
Study Section
Special Emphasis Panel (ZEY1-VSN (10))
Program Officer
Agarwal, Neeraj
Project Start
2010-09-30
Project End
2015-08-31
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
4
Fiscal Year
2013
Total Cost
$1,962,726
Indirect Cost
$639,724
Name
Case Western Reserve University
Department
Pharmacology
Type
Schools of Medicine
DUNS #
077758407
City
Cleveland
State
OH
Country
United States
Zip Code
44106
Palczewska, Grazyna; Dong, Zhiqian; Golczak, Marcin et al. (2014) Noninvasive two-photon microscopy imaging of mouse retina and retinal pigment epithelium through the pupil of the eye. Nat Med 20:785-9
Kohno, Hideo; Maeda, Tadao; Perusek, Lindsay et al. (2014) CCL3 production by microglial cells modulates disease severity in murine models of retinal degeneration. J Immunol 192:3816-27
Sundermeier, Thomas R; Zhang, Ning; Vinberg, Frans et al. (2014) DICER1 is essential for survival of postmitotic rod photoreceptor cells in mice. FASEB J 28:3780-91
Maeda, Akiko; Palczewska, Grazyna; Golczak, Marcin et al. (2014) Two-photon microscopy reveals early rod photoreceptor cell damage in light-exposed mutant mice. Proc Natl Acad Sci U S A 111:E1428-37
Wang, Jin-shan; Nymark, Soile; Frederiksen, Rikard et al. (2014) Chromophore supply rate-limits mammalian photoreceptor dark adaptation. J Neurosci 34:11212-21
Sawada, Osamu; Perusek, Lindsay; Kohno, Hideo et al. (2014) All-trans-retinal induces Bax activation via DNA damage to mediate retinal cell apoptosis. Exp Eye Res 123:27-36
Wu, Xueming; Yu, Guanping; Luo, Chengcai et al. (2014) Synthesis and evaluation of a nanoglobular dendrimer 5-aminosalicylic Acid conjugate with a hydrolyzable schiff base spacer for treating retinal degeneration. ACS Nano 8:153-61
Sakami, Sanae; Kolesnikov, Alexander V; Kefalov, Vladimir J et al. (2014) P23H opsin knock-in mice reveal a novel step in retinal rod disc morphogenesis. Hum Mol Genet 23:1723-41
Sundermeier, Thomas R; Vinberg, Frans; Mustafi, Debarshi et al. (2014) R9AP overexpression alters phototransduction kinetics in iCre75 mice. Invest Ophthalmol Vis Sci 55:1339-47
Vinberg, Frans; Kolesnikov, Alexander V; Kefalov, Vladimir J (2014) Ex vivo ERG analysis of photoreceptors using an in vivo ERG system. Vision Res 101:108-17

Showing the most recent 10 out of 27 publications