This R24 research resource, called "Engineering for Neurological Rehabilitation" seeks to disseminate the PIs'core expertise in engineering and neuroscience to support the development of new faculty in medical centers and hospitals across the United States. This program will build on core facilities established under the auspices of the PIs'current R24 network and under analogous, NIDRR-sponsored research centers supporting robotics research for stroke and other neurological disorders. These core facilities include the following: 1. Neurosciences Core: Directors are C.J. Heckman (Northwestern) and George Hornby (UIC). Dr. Heckman directs a laboratory dealing with animal models of spinal cord injury using electrophysiological, anatomical, immunohistochemical, and pharmacological approaches. This laboratory will be available to pursue studies preparatory to human testing. Dr. Hornby's core will facilitate clinical testing in human populations. 2. Robotics/Mechanics Core: Directors are James Patton and Sandro Mussa-lvaldi. They will make available an array of different robotic and mechanical systems designed for fundamental research, for diagnostic studies, and for testing therapeutic approaches in stroke and spinal cord injury. New robotic systems such as the Haptic Master and other special-purpose robots will also be made available for collaborative interaction. In addition, gait studies using the "Lokomat" as both a diagnostic and therapeutic tool will be offered. 3. Information Technology/Sensing Core: Directors are Li-Qun Zhang and Paolo Bonato (Spaulding). This core facility has the capacity to build novel electronic systems such as state-of-the-art EMG electrodes, telemetered data collection systems, and extensive modeling and simulation facilities. 4. Modeling and Simulation Core: Wendy Murray and Yasin Daher. Availability of these research cores will be disseminated through dedicated websites and presented at national and international meetings. Finally, a series of didactic courses, hands-on workshops, and symposia will be offered to present novel research approaches.

Public Health Relevance

This R24 research resource application seeks to build on expertise in neuroscience and engineering that is concentrated in the research laboratories of the Rehabilitation Institute of Chicago, and in affiliated laboratories at Northwestern University. The PIs offer opportunities for collaboration on studies relating to neurological disorders in animal models, and in human populations.

National Institute of Health (NIH)
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Resource-Related Research Projects (R24)
Project #
Application #
Study Section
Special Emphasis Panel (ZHD1-RRG-K (13))
Program Officer
Nitkin, Ralph M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Rehabilitation Institute of Chicago
United States
Zip Code
Saul, Katherine R; Hu, Xiao; Goehler, Craig M et al. (2015) Benchmarking of dynamic simulation predictions in two software platforms using an upper limb musculoskeletal model. Comput Methods Biomech Biomed Engin 18:1445-58
Li, Sheng; Liu, Jie; Bhadane, Minal et al. (2014) Activation deficit correlates with weakness in chronic stroke: evidence from evoked and voluntary EMG recordings. Clin Neurophysiol 125:2413-7
Liu, Jie; Li, Sheng; Li, Xiaoyan et al. (2014) Suppression of stimulus artifact contaminating electrically evoked electromyography. NeuroRehabilitation 34:381-9
Coscia, Martina; Cheung, Vincent C K; Tropea, Peppino et al. (2014) The effect of arm weight support on upper limb muscle synergies during reaching movements. J Neuroeng Rehabil 11:22
Mottram, C J; Heckman, C J; Powers, R K et al. (2014) Disturbances of motor unit rate modulation are prevalent in muscles of spastic-paretic stroke survivors. J Neurophysiol 111:2017-28
Li, Sheng; Chang, Shuo-Hsiu; Francisco, Gerard E et al. (2014) Acoustic startle reflex in patients with chronic stroke at different stages of motor recovery: a pilot study. Top Stroke Rehabil 21:358-70
Jahanmiri-Nezhad, Faezeh; Barkhaus, Paul E; Rymer, William Z et al. (2014) Sensitivity of fasciculation potential detection is dramatically reduced by spatial filtering of surface electromyography. Clin Neurophysiol 125:1498-500
Jahanmiri-Nezhad, Faezeh; Li, Xiaoyan; Barkhaus, Paul E et al. (2014) A clinically applicable approach for detecting spontaneous action potential spikes in amyotrophic lateral sclerosis with a linear electrode array. J Clin Neurophysiol 31:35-40
Li, Xiaoyan; Shin, Henry; Zhou, Ping et al. (2014) Power spectral analysis of surface electromyography (EMG) at matched contraction levels of the first dorsal interosseous muscle in stroke survivors. Clin Neurophysiol 125:988-94
Li, Sheng; Durand-Sanchez, Ana; Latash, Mark L (2014) Inter-limb force coupling is resistant to distorted visual feedback in chronic hemiparetic stroke. J Rehabil Med 46:206-11

Showing the most recent 10 out of 40 publications