Familial dilated cardiomyopathy (DCM) and familial hypertrophic cardiomyopathy (HOM) are considered the two most common causes of inherited cardiovascular diseases. Previously, it has been difficult to study these diseases in human models because of limited access to human cardiomyocytes and difficulty growing them. With the discovery of human induced pluripotent stem cells (iPSCs) and the increased efficiency and reproducibility of differentiating them into beating cardiomyocytes (iPSC-CMs), the landscape has dramatically changed. For the first time, it is now possible to create patient-specific and disease-specific cell lines to improve our understanding of the molecular mechanisms of DCM and HCM. Hence the major goals of this multidisciplinary R24 Resource-Related Research Project are (i) generation, (ii) characterization, (iii) sequencing, and (iv) distribution of cardiac iPSC lines. Over the next 5 years, we plan to create an iPSC bank of 600 lines derived from control individuals, HCM patients, and DCM patients. To accomplish these goals, we have assembled a truly collaborative team of investigators with expertise in cardiovascular medicine, iPSC biology, developmental biology, next generation sequencing (NGS) technology, population genetics, biomedical informatics, large-scale database repository, and business development. We propose the following 4 Specific Aims over the next 5 years:
Aim 1 : To generate 600 iPSC lines from controls, DCM, and HCM patients.
Aim 2 : To evaluate drug safety screening using iPSCs (""""""""clinical trial in a petri dish"""""""").
Aim 3 : To obtain genotype-phenotype information using DNA-seq and RNA-seq.
Aim 4 : To distribute IPSC lines and their genotype-phenotype data to academic community. In summary, we believe this R24 will address a national need and fulfill NHLBI's strategic vision of creating a novel biorepository (iPSC-genotype-phenotype) that is valuable to the broader scientific community. Given our expertise and track record, we are confident we can deliver on these milestones.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Resource-Related Research Projects (R24)
Project #
Application #
Study Section
Special Emphasis Panel (ZHL1)
Program Officer
Buxton, Denis B
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Stanford University
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Burridge, Paul W; Diecke, Sebastian; Matsa, Elena et al. (2016) Modeling Cardiovascular Diseases with Patient-Specific Human Pluripotent Stem Cell-Derived Cardiomyocytes. Methods Mol Biol 1353:119-30
Hu, Shijun; Zhao, Ming-Tao; Jahanbani, Fereshteh et al. (2016) Effects of cellular origin on differentiation of human induced pluripotent stem cell-derived endothelial cells. JCI Insight 1:
Kodo, Kazuki; Ong, Sang-Ging; Jahanbani, Fereshteh et al. (2016) iPSC-derived cardiomyocytes reveal abnormal TGF-β signalling in left ventricular non-compaction cardiomyopathy. Nat Cell Biol 18:1031-42
Broughton, K M; Li, J; Sarmah, E et al. (2016) A myosin activator improves actin assembly and sarcomere function of human-induced pluripotent stem cell-derived cardiomyocytes with a troponin T point mutation. Am J Physiol Heart Circ Physiol 311:H107-17
Wu, Haodi; Lee, Jaecheol; Vincent, Ludovic G et al. (2015) Epigenetic Regulation of Phosphodiesterases 2A and 3A Underlies Compromised β-Adrenergic Signaling in an iPSC Model of Dilated Cardiomyopathy. Cell Stem Cell 17:89-100
Wilson, Kitchener D; Shen, Peidong; Fung, Eula et al. (2015) A Rapid, High-Quality, Cost-Effective, Comprehensive and Expandable Targeted Next-Generation Sequencing Assay for Inherited Heart Diseases. Circ Res 117:603-11
Wilson, Kitchener D; Wu, Joseph C (2015) Induced pluripotent stem cells. JAMA 313:1613-4
Sallam, Karim; Li, Yingxin; Sager, Philip T et al. (2015) Finding the rhythm of sudden cardiac death: new opportunities using induced pluripotent stem cell-derived cardiomyocytes. Circ Res 116:1989-2004
Karakikes, Ioannis; Ameen, Mohamed; Termglinchan, Vittavat et al. (2015) Human induced pluripotent stem cell-derived cardiomyocytes: insights into molecular, cellular, and functional phenotypes. Circ Res 117:80-8
Burridge, Paul W; Holmström, Alexandra; Wu, Joseph C (2015) Chemically Defined Culture and Cardiomyocyte Differentiation of Human Pluripotent Stem Cells. Curr Protoc Hum Genet 87:21.3.1-15

Showing the most recent 10 out of 21 publications