Animal models of human disease are critical for translational research aimed at dissecting disease mechanisms and for developing new therapies. The mouse has been invaluable in this effort, but for many diseases this species fails to model the human phenotype. This is particularly evident in the cases of human lung diseases such as cystic fibrosis (CF), alpha-1 antitrypsin (AAT) deficiency, and primary ciliary dyskinesia (PCD). The basis for this species-specificity in disease susceptibility relates to both differences in lung anatomy and cell biology, and the genetic divergence of mice and humans. Recent advances in the field of animal modeling have placed the domestic ferret at the forefront of new genetically pliable species for modeling human diseases. First, we have developed methods for generating knockout, knock-in, and transgenic ferrets that utilize somatic cell nuclear transfer (SCNT). Second, the ferret genome was recently sequenced and is now publically accessible, providing the information needed to interrogate the genetic suitability of the ferret to model a particular disease, generate gene-targeting constructs, and rapidly generate research tools for studies in this species. As proof of concept, cystic fibrosis transmembrane conductance regulator (CFTR) knockout ferrets have been generated and found to model aspects of multi-organ disease (including spontaneous lung infections) seen in CF patients. Additionally, transgenic ferrets that express fCFTR specifically in the gut (under the direction of the FABPi promoter) have been generated and shown to correct the meconium ileus phenotype in newborn CF ferrets. This R24 resource proposal seeks to create a Center that provides services for ferret disease modeling, with a focus on the distribution of CF ferret resources and the creation of new ferret models of lung disease and of other diseases of NHLBI interest. Other focuses of this proposal will be to provide training in the use of ferrets for research, provide services for alternative in vitro and ex vivo airway models, and promote information exchange with the community through a web site that catalogs and distributes "tool-box" resources of general use for research in the ferret (antibodies, cDNAs, viral vectors, primary airway cells, improved genome annotation files for omics research). Strategic goals of this application will be to expand the number of ferret disease models available to the research community, allow for broad and cost-effective usage of CF ferret models, and build a self-sustaining business model for ongoing function of the Center past the five years of this proposal.

Public Health Relevance

Cystic fibrosis (CF) and alpha-1 antitrypsin (AAT) deficiency are among the most common inherited recessive disorders in Caucasians, affecting ~1 in every 1600-3500 births each year. Over $1.6 billion is spent annually on the clinical care of CF and AAT patients in the U.S. alone. Ferret models of these and other lung diseases will significantly aid the field in both understanding the mechanisms that underlie pathogenesis and in developing therapies. The cost and technical aspects associated with generating and using ferret disease models are significant. Thus, a Resource Center focused on ferret disease models of NHLBI interest will broaden the impact that this valuable species can have on human disease research. (End of Abstract)

National Institute of Health (NIH)
Resource-Related Research Projects (R24)
Project #
Application #
Study Section
Special Emphasis Panel (ZHL1)
Program Officer
Postow, Lisa
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Iowa
Anatomy/Cell Biology
Schools of Medicine
Iowa City
United States
Zip Code
Gibson-Corley, Katherine N; Meyerholz, David K; Engelhardt, John F (2016) Pancreatic pathophysiology in cystic fibrosis. J Pathol 238:311-20
Evans, T Idil Apak; Joo, Nam Soo; Keiser, Nicholas W et al. (2016) Glandular Proteome Identifies Antiprotease Cystatin C as a Critical Modulator of Airway Hydration and Clearance. Am J Respir Cell Mol Biol 54:469-81
Yi, Yaling; Sun, Xingshen; Gibson-Corley, Katherine et al. (2016) A Transient Metabolic Recovery from Early Life Glucose Intolerance in Cystic Fibrosis Ferrets Occurs During Pancreatic Remodeling. Endocrinology 157:1852-65
Yan, Ziying; Sun, Xingshen; Feng, Zehua et al. (2015) Optimization of Recombinant Adeno-Associated Virus-Mediated Expression for Large Transgenes, Using a Synthetic Promoter and Tandem Array Enhancers. Hum Gene Ther 26:334-46
Keiser, Nicholas W; Birket, Susan E; Evans, Idil A et al. (2015) Defective innate immunity and hyperinflammation in newborn cystic fibrosis transmembrane conductance regulator-knockout ferret lungs. Am J Respir Cell Mol Biol 52:683-94
Yan, Ziying; Stewart, Zoe A; Sinn, Patrick L et al. (2015) Ferret and pig models of cystic fibrosis: prospects and promise for gene therapy. Hum Gene Ther Clin Dev 26:38-49
Sui, Hongshu; Yi, Yaling; Yao, Jianrong et al. (2014) Quantifying insulin sensitivity and entero-insular responsiveness to hyper- and hypoglycemia in ferrets. PLoS One 9:e90519
Peng, Xinxia; Alföldi, Jessica; Gori, Kevin et al. (2014) The draft genome sequence of the ferret (Mustela putorius furo) facilitates study of human respiratory disease. Nat Biotechnol 32:1250-5
Sun, Xingshen; Olivier, Alicia K; Yi, Yaling et al. (2014) Gastrointestinal pathology in juvenile and adult CFTR-knockout ferrets. Am J Pathol 184:1309-22
Sun, Xingshen; Olivier, Alicia K; Liang, Bo et al. (2014) Lung phenotype of juvenile and adult cystic fibrosis transmembrane conductance regulator-knockout ferrets. Am J Respir Cell Mol Biol 50:502-12