MRI is the only technology that can image the connectivity of the human brain in vivo and non-invasively. However, neither BOLD fMRI nor diffusion-based fiber tracking has been able to break the barrier of 1-mm voxel spatial resolution. Yet, 1-mm voxel contains roughly 50,000 neuronal cells and the human cortex is less than 5 mm thick. The disparity between the spatial scales has thus created a large gap between MRI studies of the whole brain and optical imaging and cell recordings of groups of neurons. The overarching objective of this proposal is to bring noninvasive human brain imaging into the microscale resolution and begin to bridge studies of neuronal circuitry and network organization in the human brain. Our breakthrough technology, termed MR Corticography (MRCoG), will achieve dramatic gains in spatial and temporal resolutions by focusing exclusively to the cortex. Higher-sensitivity coil sensors will be designed that tailor to the superficial volume of the brain MRCoG will also be used to map intracortical axonal connectivity, overcoming a fundamental resolution limit inherent to all in vivo human neuronal fiber tractography to date by replacing diffusion imaging with a novel susceptibility contrast mapping of axon fibers. Innovative imaging pulse sequences will be designed to complement the high-sensitivity coil arrays to achieve higher spatial resolution in the neocortex. The improved capabilities of these sensors will be further exploited using new, vastly more efficient spatial multiplexed and temporal multiplexed image acquisition to further accelerate scanning by taking advantage of spatiotemporal sparsity. In summary, the proposed research will create a novel technology for imaging the human brain's neocortex with barrier-breaking resolution and contrast. MRCoG will facilitate the integration between in vivo non-invasive human-brain MRI and cellular and genetic imaging techniques. If successful, it will fundamentally transform our ability to study the human brain. Because it is based on MRI, MRCoG can be readily translated to patient care, providing potential high impact in the care of mental health, traumatic brain injuries, epilepsy among many other debilitating brain diseases and disorders.

Public Health Relevance

If successful, the new technology developed in this project will dramatically improve our ability to visualize the structures and functions of human brain cortex. As a new research tool, it can not only transform the understanding of networks within our brain, but also provide potential high impact in the care of mental health, traumatic brain injuries, epilepsy among many other debilitating brain diseases and disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Resource-Related Research Projects (R24)
Project #
1R24MH106096-01
Application #
8828462
Study Section
Special Emphasis Panel (ZMH1-ERB-C (09))
Program Officer
Farber, Gregory K
Project Start
2014-09-26
Project End
2017-06-30
Budget Start
2014-09-26
Budget End
2015-06-30
Support Year
1
Fiscal Year
2014
Total Cost
$496,313
Indirect Cost
$86,122
Name
University of California Berkeley
Department
Neurosciences
Type
Organized Research Units
DUNS #
124726725
City
Berkeley
State
CA
Country
United States
Zip Code
94704
Cauley, Stephen F; Setsompop, Kawin; Bilgic, Berkin et al. (2016) Autocalibrated wave-CAIPI reconstruction; Joint optimization of k-space trajectory and parallel imaging reconstruction. Magn Reson Med :
Wei, Hongjiang; Xie, Luke; Dibb, Russell et al. (2016) Imaging whole-brain cytoarchitecture of mouse with MRI-based quantitative susceptibility mapping. Neuroimage 137:107-15
Chatnuntawech, Itthi; McDaniel, Patrick; Cauley, Stephen F et al. (2016) Single-step quantitative susceptibility mapping with variational penalties. NMR Biomed :
McDaniel, Patrick; Bilgic, Berkin; Fan, Audrey P et al. (2016) Mitigation of partial volume effects in susceptibility-based oxygenation measurements by joint utilization of magnitude and phase (JUMP). Magn Reson Med :
Kim, Tae Hyung; Setsompop, Kawin; Haldar, Justin P (2016) LORAKS makes better SENSE: Phase-constrained partial fourier SENSE reconstruction without phase calibration. Magn Reson Med :
Wei, Hongjiang; Dibb, Russell; Zhou, Yan et al. (2015) Streaking artifact reduction for quantitative susceptibility mapping of sources with large dynamic range. NMR Biomed 28:1294-303
Liu, Chunlei; Wei, Hongjiang; Gong, Nan-Jie et al. (2015) Quantitative Susceptibility Mapping: Contrast Mechanisms and Clinical Applications. Tomography 1:3-17
Chen, Liyong; Beckett, Alexander; Verma, Ajay et al. (2015) Dynamics of respiratory and cardiac CSF motion revealed with real-time simultaneous multi-slice EPI velocity phase contrast imaging. Neuroimage 122:281-7