Novel scientific contributions that would come from the exciting exploration of aquatic experimental models that each have evolved new ways to survive within exceedingly varied and stressful physical and biological environments is our foremost contention for the sequencing and assembly of the genomes of the species listed in this proposal. Many long-standing aquatic research models have notable and noble places in the history of our understanding of human disease. In addition, distinct attributes of these models provided plasticity in experimental design and a breadth of discovery needed to light the fires of creative inquiry. Such has been the historical roles for non-mammalian and aquatic animal models. However, the power of genomics over the past decade has revolutionized our understanding of the molecular basis of human disease. Unfortunately, due to high costs associated with the development of genomic resources, this advance has been limited to only a handful of popular and established animal models. Naturally, concurrent with the initial rise of genomics capabilities for a few model organisms there came reduced interest in support for comparative biological scientific inquiry that employed species that did not possess such resources. Previously we had organized a meeting, entitled "Aquatic Models for Human Disease", to gather a broad community of aquatic researchers seeking to gain input toward obtaining a list of species that reflect a broad diversity of species-specific biology. More importantly the focus of this discussion was to choose species that would provide a means to explore the biology that indirectly reflects a particular human disease. From this discussion and a genomics workshop held prior to the meeting, we have compiled a priority list of species with model organism proven capabilities (Table 1). Herein we describe our plans to generate genome resources for nine aquatic species that will empower scientists to test novel hypotheses for a wide array of human disease pathway origins. The great promise to forward our understanding of human disease using these proposed aquatic genomes is now warranted.

Public Health Relevance

There is a real need to continue to develop and understand non-human models of human disease. The natural course of a disease in a human may take years to manifest symptoms;to overcome this problem, investigators have developed experimentally tractable models employing organisms that can mimic a disease-in a period of months to a few years and with genetic power. We have thus far not established the resources needed to take advantage of the aquatic species having unique attributes that mimic a wide array of human diseases.

Agency
National Institute of Health (NIH)
Institute
Office of The Director, National Institutes of Health (OD)
Type
Resource-Related Research Projects (R24)
Project #
8R24OD011198-02
Application #
8333439
Study Section
National Center for Research Resources Initial Review Group (RIRG)
Program Officer
Chang, Michael
Project Start
2011-09-15
Project End
2014-07-31
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
2
Fiscal Year
2012
Total Cost
$380,073
Indirect Cost
$77,948
Name
Washington University
Department
Genetics
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Elipot, Yannick; Hinaux, Hélène; Callebert, Jacques et al. (2014) A mutation in the enzyme monoamine oxidase explains part of the Astyanax cavefish behavioural syndrome. Nat Commun 5:3647
McGaugh, Suzanne E; Gross, Joshua B; Aken, Bronwen et al. (2014) The cavefish genome reveals candidate genes for eye loss. Nat Commun 5:5307
Schartl, Manfred; Walter, Ronald B; Shen, Yingjia et al. (2013) The genome of the platyfish, Xiphophorus maculatus, provides insights into evolutionary adaptation and several complex traits. Nat Genet 45:567-72
Pabuwal, Vagmita; Boswell, Mikki; Pasquali, Amanda et al. (2013) Transcriptomic analysis of cultured whale skin cells exposed to hexavalent chromium [Cr(VI)]. Aquat Toxicol 134-135:74-81
Kowalko, Johanna E; Rohner, Nicolas; Linden, Tess A et al. (2013) Convergence in feeding posture occurs through different genetic loci in independently evolved cave populations of Astyanax mexicanus. Proc Natl Acad Sci U S A 110:16933-8