This application seeks support for a new, pre-doctoral educational and training program in Cellular and Molecular Imaging of Cancer at Vanderbilt University and Meharry Medical College. Biomedical imaging in vivo has developed from early uses of X-rays for diagnosis into a compendium of powerful techniques useful not only for patient care but also for the study of fundamental biological processes at the cellular and molecular levels. A variety of technical and molecular tools have evolved in recent years to propel cellular and molecular imaging into the forefront of cancer research. However, there is a critical need for scientists working at the interface of the physical and biological sciences to be trained in the ability to make the connections between imaging and basic biological processes in cancer. We propose to address this need with a comprehensive didactic educational and research training program designed for 10 outstanding pre-doctoral scientists (5 in each of two years). We will recruit trainees who have recently completed an undergraduate degree in a relevant science (particularly in Biomedical Engineering, Physics, Chemistry, Molecular Biophysics, Electrical Engineering or Biology) who will pursue research focused on molecular and/or cellular imaging of cancer. The didactic component of the proposed program will consist of courses, seminars, and a journal club. The courses will be organized into two tracks: one for those whose prior training emphasized relevant physical sciences and one for those with prior training in relevant biological sciences. The two tracks converge by the end of the second year so that all trainees, regardless of previous training, will be equipped with the necessary background to combine quantitative imaging and cancer biology at the highest levels. All trainees will be mentored in the ethics of biomedical research as well as in grant writing. Furthermore, both the didactic and research training components are designed to synthesize the physical and biological disciplines thereby creating a unique multi- and interdisciplinary training program for the study of cancer. For the research component, each trainee will have two mentors representing the disciplines of imaging science and cancer biology. Trainees will be integrated into ongoing NIH funded investigations within a leading biomedical imaging institute with strong connections and roots within a leading cancer center. By combining the resources and programs of the Vanderbilt University Institute of Imaging Science (VUIIS), the Vanderbilt-Ingram Cancer Center (VICC), and the Cancer Center at Meharry Medical College (CCM), we believe we have an outstanding infrastructure and personnel to create a leading, exemplary training program in cancer imaging.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Education Projects (R25)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Program Officer
Perkins, Susan N
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Vanderbilt University Medical Center
Schools of Medicine
United States
Zip Code
Smith, Alex K; Dortch, Richard D; Dethrage, Lindsey M et al. (2017) Incorporating dixon multi-echo fat water separation for novel quantitative magnetization transfer of the human optic nerve in vivo. Magn Reson Med 77:707-716
Campbell, Desmond; Peterson, Todd (2017) Molecular Breast Imaging using Synthetic Projections from High-Purity Germanium Detectors: A Simulation Study. IEEE Trans Radiat Plasma Med Sci 1:405-415
Ianni, Julianna D; Welch, E Brian; Grissom, William A (2017) Ghost reduction in echo-planar imaging by joint reconstruction of images and line-to-line delays and phase errors. Magn Reson Med :
Smith, Alex K; By, Samantha; Lyttle, Bailey D et al. (2017) Evaluating single-point quantitative magnetization transfer in the cervical spinal cord: Application to multiple sclerosis. Neuroimage Clin 16:58-65
Diggins, Kirsten E; Greenplate, Allison R; Leelatian, Nalin et al. (2017) Characterizing cell subsets using marker enrichment modeling. Nat Methods 14:275-278
Roussel, Mikael; Ferrell Jr, P Brent; Greenplate, Allison R et al. (2017) Mass cytometry deep phenotyping of human mononuclear phagocytes and myeloid-derived suppressor cells from human blood and bone marrow. J Leukoc Biol 102:437-447
Gifford, Aliya; Towse, Theodore F; Walker, Ronald C et al. (2016) Characterizing active and inactive brown adipose tissue in adult humans using PET-CT and MR imaging. Am J Physiol Endocrinol Metab 311:E95-E104
Ferrell Jr, Paul Brent; Diggins, Kirsten Elizabeth; Polikowsky, Hannah Grace et al. (2016) High-Dimensional Analysis of Acute Myeloid Leukemia Reveals Phenotypic Changes in Persistent Cells during Induction Therapy. PLoS One 11:e0153207
Gaur, Pooja; Partanen, Ari; Werner, Beat et al. (2016) Correcting heat-induced chemical shift distortions in proton resonance frequency-shift thermometry. Magn Reson Med 76:172-82
Ianni, Julianna D; Grissom, William A (2016) Trajectory Auto-Corrected image reconstruction. Magn Reson Med 76:757-68

Showing the most recent 10 out of 49 publications