The RISE program at CCNY supports undergraduate, masters and doctoral students. Since the previous funding period we have made significant progress towards transitioning graduating undergraduates and masters students into doctoral programs in the biomedical sciences after graduation. Graduation of doctoral students in a timely manner and job placement of the graduates after they earn a Ph.D. remains a strong part of the RISE program. The progress in promoting of students into doctoral programs reflects a more stringent candidate selection process to screen out students who are already committed to medical careers or careers in other fields unrelated to biomedical research. For this reason strengthening the processes of candidate selection and advisement is one of the cornerstones of the RISE program in the present proposal. In the present proposal we also institute 3 novel activities to promote student development: 1) retreats for RISE trainees to promote a sense of program cohesiveness and to gain feedback that will help address student concerns and lead to positive changes that will strengthen the RISE program going forward, 2) peer mentoring of RISE undergraduates by RISE doctoral students, and 3) a new Science Division course based on RISE mentor research. As in the past, students will be placed in laboratories at CCNY where they will carry out research projects under the mentorship of faculty in the departments of Chemistry, Biochemistry, Biology, Physics and Earth Science. However, in the next funding period students will have access to a greatly enhanced pool of mentors owing to a recent initiative by the City University of New York to develop infrastructure in the sciences, particulary in the rapidly expanding area of structural biology. Students who choose to work on projects in structural biology will have access to state-of-the-art instrumentation for structural analyses of biomolecules at the newly constructed New York Structural Biology Center. In addition, City College has established an ongoing partnership with Memorial Sloan Kettering Cancer Center that has created new opportunities for students to gain hands-on experience in cancer research at an internationally recognized cancer center. In conjunction with the partnership, City College has developed new courses in cancer biology and biotechnology that will spur greater awareness of, and interest in, cancer research. Among these is a unique online course in health disparities among the minority populations particularly with regard to issues of health disparities relating to cancer incidence and prevention. Since RISE is a minority serving program we anticipate that this will allow students to connect to the field in a more personal way. We anticipate that this will also open a new area of behavioral research that can be incorporated as a regular part of the RISE program in the future.

Public Health Relevance

Cancer and many other diseases disproportionately affect minority populations which results in disparities with regard to both disease incidence and treatment outcomes. The RISE program helps to address these health disparities by training minority scientists and promoting their entry into careers in biomedical research.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Education Projects (R25)
Project #
Application #
Study Section
Special Emphasis Panel (TWD)
Program Officer
Broughton, Robin Shepard
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
City College of New York
Schools of Arts and Sciences
New York
United States
Zip Code
Alexander, Adanna G; Marfil, Vanessa; Li, Chris (2014) Use of Caenorhabditis elegans as a model to study Alzheimer's disease and other neurodegenerative diseases. Front Genet 5:279
Kariev, Alisher M; Njau, Philipa; Green, Michael E (2014) The open gate of the K(V)1.2 channel: quantum calculations show the key role of hydration. Biophys J 106:548-55
Liu, Suqing; Gonzalez, Julian; Hwang, Bor-Jang et al. (2011) Induction of cyclin D1 by arsenite and UVB-irradiation in human keratinocytes. J Health Care Poor Underserved 22:110-21
Lee, Mark J; Mondal, Ariful; Small, Chiyedza et al. (2011) A database for the analysis of immunity genes in Drosophila: PADMA database. Fly (Austin) 5:155-61
Lee, Mark J; Kalamarz, Marta E; Paddibhatla, Indira et al. (2009) Chapter 5: Virulence factors and strategies of Leptopilina spp.: selective responses in Drosophila hosts. Adv Parasitol 70:123-45
Steinberg, Mark L; Hubbard, Karen; Utti, Charles et al. (2009) Patterns of persistent DNA damage associated with sun exposure and the glutathione S-transferase M1 genotype in melanoma patients. Photochem Photobiol 85:379-86
Ferrarese, Roberto; Morales, Jorge; Fimiarz, Daniel et al. (2009) A supracellular system of actin-lined canals controls biogenesis and release of virulence factors in parasitoid venom glands. J Exp Biol 212:2261-8
Hwang, Bor-Jang; Kuttamperoor, Francis; Wu, Julia et al. (2009) Spectrum of mitochondrial DNA deletions within the common deletion region induced by low levels of UVB irradiation of human keratinocytes in vitro. Gene 440:23-7
Steinberg, Mark L; Hwang, Bor-Jang; Tang, Laura et al. (2008) E-cadherin gene alterations in gastric cancers in different ethnic populations. Ethn Dis 18:S2-70-4
Hubbard, Karen; Steinberg, Mark L; Hill, Helene et al. (2008) Mitochondrial DNA deletions in skin from melanoma patients. Ethn Dis 18:S2-38-43

Showing the most recent 10 out of 13 publications