Diverse racial and ethnic groups as well as individuals with disabilities and/or having socially, economically, or educationally disadvantaged backgrounds are underrepresented in neuroscience. Hunter College of the City University of New York (CUNY) recognizes that increasing the number of highly qualified neuroscientists from these underrepresented populations is integral to our future as an academic and research institution. Hunter College aims to increase the number of well-trained, diverse neuroscientists. The overall goal of this application is to develop a neuroscience training program at Hunter that will encourage and prepare students from diverse backgrounds to enter into and succeed in PhD programs in the neurosciences. To achieve this goal, Hunter has developed a research-educational partnership with four outstanding T32-awarded universities-New York University, Brown University, University of Michigan, and Vanderbilt University. This partnership will expose 12 BP-ENDURE-trainee students per year to a research-intensive curriculum and an environment of excellence and active research. Moreover, because of the diversity of the proposed mentors, students will be exposed to a broad spectrum of researchers, including basic neuroscientists interested in central nervous system (CNS) issues and applied neuroscientists from the areas of clinical, social, health, developmental, and cognitive neuropsychology. To achieve our goals, the following aims are proposed: (1) To develop an outstanding group of undergraduate students with diverse backgrounds dedicated to neuroscience research;(2) To provide scientific skill and research experiences to our trainees through research placement with actively funded neuroscientists;(3) To develop academic development and curriculum enhancement activities rooted in the student's research activities;(4) To maintain an effective Administrative Core to support our students'needs and development. Our measurable objectives during the requested funding period include: (1) attain 85 to 90% acceptance of trainees to graduate school programs in neuroscience;(2) improvement of our students in quantitative skills and academic achievements as well as their (3) scientific writing and oral presentations. Outcome from evaluations of the Steering Committee, the external evaluator, and the Administrative Core will guide future modifications to our training initiatives.

Public Health Relevance

Hunter College of the City University of New York, New York University, Brown University, University of Michigan, and Vanderbilt University recognize that increasing the number of highly qualified neuroscientists from diverse backgrounds is integral to their futures as academic and research institutions. A partnership between these institutions aims to develop a neuroscience training program that will prepare students from diverse backgrounds to enter into and succeed in PhD programs in the neurosciences.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Education Projects (R25)
Project #
Application #
Study Section
Special Emphasis Panel (ZMH1)
Program Officer
Jones, Michelle
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Hunter College
Schools of Arts and Sciences
New York
United States
Zip Code
Cheref, Soumia; Lane, Robert; Polanco-Roman, Lillian et al. (2015) Suicidal ideation among racial/ethnic minorities: moderating effects of rumination and depressive symptoms. Cultur Divers Ethnic Minor Psychol 21:31-40
Bowman, Rachel E; Luine, Victoria; Diaz Weinstein, Samantha et al. (2015) Bisphenol-A exposure during adolescence leads to enduring alterations in cognition and dendritic spine density in adult male and female rats. Horm Behav 69:89-97
Zanca, Roseanna M; Braren, Stephen H; Maloney, Brigid et al. (2015) Environmental Enrichment Increases Glucocorticoid Receptors and Decreases GluA2 and Protein Kinase M Zeta (PKMζ) Trafficking During Chronic Stress: A Protective Mechanism? Front Behav Neurosci 9:303
Chowdhury, Tara G; Ríos, Mariel B; Chan, Thomas E et al. (2014) Activity-based anorexia during adolescence disrupts normal development of the CA1 pyramidal cells in the ventral hippocampus of female rats. Hippocampus 24:1421-9
Braren, Stephen H; Drapala, Damian; Tulloch, Ingrid K et al. (2014) Methamphetamine-induced short-term increase and long-term decrease in spatial working memory affects protein Kinase M zeta (PKMζ), dopamine, and glutamate receptors. Front Behav Neurosci 8:438
Bowman, Rachel E; Luine, Victoria; Khandaker, Hameda et al. (2014) Adolescent bisphenol-A exposure decreases dendritic spine density: role of sex and age. Synapse 68:498-507
Chowdhury, Tara G; Barbarich-Marsteller, Nicole C; Chan, Thomas E et al. (2014) Activity-based anorexia has differential effects on apical dendritic branching in dorsal and ventral hippocampal CA1. Brain Struct Funct 219:1935-45
Shivers, Kai-Yvonne; Nikolopoulou, Anastasia; Machlovi, Saima Ishaq et al. (2014) PACAP27 prevents Parkinson-like neuronal loss and motor deficits but not microglia activation induced by prostaglandin J2. Biochim Biophys Acta 1842:1707-19
Wable, Gauri S; Barbarich-Marsteller, Nicole C; Chowdhury, Tara G et al. (2014) Excitatory synapses on dendritic shafts of the caudal basal amygdala exhibit elevated levels of GABAA receptor α4 subunits following the induction of activity-based anorexia. Synapse 68:1-15
Sebastian, Veronica; Vergel, Tatyana; Baig, Raheela et al. (2013) PKMζ differentially utilized between sexes for remote long-term spatial memory. PLoS One 8:e81121

Showing the most recent 10 out of 15 publications