Cancer can be viewed as a state in which the balance between cell proliferation and cell death aberrantly favors the former. We and others have discovered that the intracellular redox environment exerts a profound influence on the normal cellular processes that regulate the balance between proliferation and cell death, including DNA synthesis, enzyme activation, cell cycle progression, proliferation, differentiation, and apoptosis. In fact, it could be argued that redox homeostasis is central to the governance of cell fate. Unfortunately, molecular mechanisms mediating redox sensitivity and regulation within cells are still poorly defined. Current pharmacological methods to alter intracellular redox state are limited by (i) their inability to operate independent of global biochemical alterations and cellular toxicity, and (ii) the required significant manipulation of culture conditions that perturb intracellular homeostasis. Our genetic constructs overcome these limitations as they enable real-time and extended assessment of alterations in intracellular redox without cellular disruption. These constructs use fluorescence resonance energy transfer (FRET), a distance- and orientation- dependent energy transfer process between donor and acceptor fluorophores. In these biosensors a change in redox induces a conformational change in the redox-sensitive switch that links the donor and acceptor, changing their distance, which in turn causes a detectable change in FRET efficiency. Here we propose to further define the sensitivity and dynamic range of our FRET biosensors relative to changes in the intracellular redox environment that appear to dictate cell fate. Advantages of this approach include: (1) the ability to quantify the change in redox state;(2) independence of sensor concentration;and (3) the ability to precisely tune the redox sensitivity and range by exchange of the switch or the fluorophore modules in the construct.
Aim 1 : Define the sensitivity and dynamic range of genetically engineered FRET redox biosensors during proliferation by comparison of nontransformed fibroblasts and isogenic porcine tumor cell lines with respect to the presence or absence of contact inhibition. Specifically, detection of physiologically relevant changes during successive stages of cell growth is proposed.
Aim 2 : Determine the extent to which the FRET biosensors are sensitive to changes in the intracellular redox environment of isogenic HCT116 p53+/+ and p53-/- cells treated with the chemotherapeutic drugs fluorouracil and doxorubicin in combination with perturbations in glutathione homeostasis. Specifically, the intracellular redox environment will be visualized in response to common chemotherapeutic drugs in combination with agents that modulate biosynthesis or metabolism of glutathione.
Aim 3 : Create second generation FRET biosensors that permit visual monitoring and dissection of intraorganellar local redox potentials. Specifically, we intend to quantify differences in redox potentials within subcellular organelles that are at a nonequilibrium steady-state with respect to each other in living cells. In sum, the proposed work will provide novel molecular tools that enable in depth examination of the role of redox signaling at the intracellular and intraorganellar level in cancer development.

Public Health Relevance

This project pursues novel molecular tools-redox-sensitive biosensors-that will enable in depth examination of the role of redox signaling in cellular processes related to cancer development. Optimization of these biosensors will enable visualization of local changes in redox potential that might regulate progression through the cell cycle and mediate contact-dependent inhibition of cell growth, the disruption of which is a key hallmark of cancer. Ultimately, the tools will enhance understanding of the extent to which cancerous cells have lost the ability to mount changes in redox potential that accompany normal cell growth versus their sensitivity to these changes.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Exploratory/Developmental Grants Phase II (R33)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-SRLB-Q (M1))
Program Officer
Knowlton, John R
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Illinois Urbana-Champaign
Organized Research Units
United States
Zip Code
Kolossov, Vladimir L; Ponnuraj, Nagendraprabhu; Beaudoin, Jessica N et al. (2017) Distinct responses of compartmentalized glutathione redox potentials to pharmacologic quinones targeting NQO1. Biochem Biophys Res Commun 483:680-686
Byrne, Matthew B; Leslie, Matthew T; Patel, Heeral S et al. (2017) Design considerations for open-well microfluidic platforms for hypoxic cell studies. Biomicrofluidics 11:054116
Kolossov, Vladimir L; Beaudoin, Jessica N; Ponnuraj, Nagendraprabhu et al. (2015) Thiol-based antioxidants elicit mitochondrial oxidation via respiratory complex III. Am J Physiol Cell Physiol 309:C81-91
Kolossov, Vladimir L; Hanafin, William P; Beaudoin, Jessica N et al. (2014) Inhibition of glutathione synthesis distinctly alters mitochondrial and cytosolic redox poise. Exp Biol Med (Maywood) 239:394-403
Byrne, Matthew B; Leslie, Matthew T; Gaskins, H Rex et al. (2014) Methods to study the tumor microenvironment under controlled oxygen conditions. Trends Biotechnol 32:556-563
Kolossov, Vladimir L; Beaudoin, Jessica N; Hanafin, William P et al. (2013) Transient light-induced intracellular oxidation revealed by redox biosensor. Biochem Biophys Res Commun 439:517-21
Kolossov, Vladimir L; Leslie, Matthew T; Chatterjee, Abhishek et al. (2012) Forster resonance energy transfer-based sensor targeting endoplasmic reticulum reveals highly oxidative environment. Exp Biol Med (Maywood) 237:652-62
Lin, Chunchen; Kolossov, Vladimir L; Tsvid, Gene et al. (2011) Imaging in real-time with FRET the redox response of tumorigenic cells to glutathione perturbations in a microscale flow. Integr Biol (Camb) 3:208-17
Kolossov, Vladimir L; Spring, Bryan Q; Clegg, Robert M et al. (2011) Development of a high-dynamic range, GFP-based FRET probe sensitive to oxidative microenvironments. Exp Biol Med (Maywood) 236:681-91