Array Microscope Assay for Cancer Cell Mechanics Abstract As cells become cancerous, characteristic changes take place in their behavior that affect cell division as well as the ability of the cell to migrate or metastasize. Metastatic behavior, including cell migration, motility and adhesion, is one of the most damaging hallmarks of cancer. Current assays of cell metastases involve the observation of the lateral mobility of cells in a """"""""scratch"""""""" assay, or the translation of cells through porous membranes. These assays usually take several hours to days of cell tracking. Metastatic potential has recently been associated with protrusive ability and cell body mechanical properties. We propose to replace the migration assay with one that measures the cell stiffness and cell mechanical response. This involves performing a calibrated tug on the cell with the measurement of the probe displacement. This measurement takes only seconds. This would allow the replacement of a five to forty eight hour assay with a one minute assay. More important than the simple benefit of a faster measurement on a single specimen, we propose an assay system that will allow high throughput methodologies to be applied to elucidating the time course of the biochemical pathways at the heart of the mechanical, and hence, metastatic propensity. We currently have a prototype multiwell assay system demonstrated on cancer cell mechanics. Our next steps are to move from a 16 well prototype to a 96 well assay, and to validate our system on cell lines and on ex-vivo tumor cells. Our development of high throughput force assays will be applied to relate tumorigenicity to the regulated expression of TGF-2 superfamily receptors and subsequent TGF-2 superfamily signaling. TGF-2 and the related TGF-2 superfamily ligands, the bone morphogenetic proteins (BMPs) and inhibin, are potent regulators of normal epithelial cell proliferation, differentiation, survival and migration, with frequent disruption in these homeostatic mechanisms resulting in human cancers and driving human cancer progression, including the metastatic process. We will assess dynamic changes in biomechanical properties during epithelial- mesenchymal transition (EMT), and investigate the migratory, invasive and metastatic potential of these cell models both in vitro (cell lines) and ex vivo and correlate these results with the biomechanical measurements. These measurements will validate our high throughput force system for a wide variety of cancer cell biology studies, enabling the elucidation of the biochemical and genetic determinants of metastatic behavior.

Public Health Relevance

Array Microscope Assay for Cancer Cell Mechanics Narrative We will develop a high throughput force assay system validated on cancer cell lines and on ex-vivo tumor specimens. This powerful system will be ready to be used for discovery of biochemical and genetic determinants of cancer cell metastatic properties to better understand the basic science, diagnosis and treatment of cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Exploratory/Developmental Grants Phase II (R33)
Project #
5R33CA155618-02
Application #
8333396
Study Section
Special Emphasis Panel (ZCA1-SRLB-V (M1))
Program Officer
Knowlton, John R
Project Start
2011-09-15
Project End
2014-08-31
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
2
Fiscal Year
2012
Total Cost
$309,109
Indirect Cost
$58,388
Name
University of North Carolina Chapel Hill
Department
Physics
Type
Schools of Arts and Sciences
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Cribb, Jeremy A; Osborne, Lukas D; Beicker, Kellie et al. (2016) An Automated High-throughput Array Microscope for Cancer Cell Mechanics. Sci Rep 6:27371
Cribb, Jeremy; Osborne, Lukas D; Hsiao, Joe Ping-Lin et al. (2015) A high throughput array microscope for the mechanical characterization of biomaterials. Rev Sci Instrum 86:023711
Osborne, Lukas D; Li, George Z; How, Tam et al. (2014) TGF-? regulates LARG and GEF-H1 during EMT to affect stiffening response to force and cell invasion. Mol Biol Cell 25:3528-40
Hanna, Sara C; Krishnan, Bhavani; Bailey, Sean T et al. (2013) HIF1? and HIF2? independently activate SRC to promote melanoma metastases. J Clin Invest 123:2078-93
Fricks, John; Yao, Lingxing; Elston, Timothy C et al. (2009) TIME-DOMAIN METHODS FOR DIFFUSIVE TRANSPORT IN SOFT MATTER. SIAM J Appl Math 69:1277-1308