We propose advanced development and validation of novel technology that will maximize the quality and utility of biologic fluid specimens, and permit the measurement of previously invisible low abundance biomarkers. The technology is transformative and paradigm-shifting because it immediately and economically solves fundamental roadblocks paralyzing the body fluid cancer biomarker field. In a single step, in minutes, our technology overcomes the severe problems of biomarker preservation, low abundance, and masking by unwanted proteins. The technology is novel porous, buoyant, core-shell hydrogel nanoparticles containing high affinity reactive chemical baits that harvests biomarkers in body fluids. Our nanoparticles can be pre loaded into Vacutainer(R) blood collection tubes, or other body fluid collection vessels. Upon contact with the sample, the suspended nanoparticles immediately affinity-sequester target biomarkers inside the particles, exclude albumin, fully protect the biomarkers from degradation (even at elevated temperatures), and massively concentrate the sequestered biomarkers into a small volume. The technology can dramatically (demonstrated up to 10,000 fold) improve the lower limits of detection and the precision of: a) mass spectrometry (MS) biomarker discovery, b) quantitation by multiple reaction monitoring (MRM), or c) quantification by any clinical grade immunoassay. All of the Aims and Milestones of the predicate IMAT NCI R21 CA137706 grant have been exceeded. We have discovered more than a dozen novel chemical baits with preferential high affinities (KD <10-11 M) for specific low abundance protein analytes. We discovered a novel shell chemistry that selectively prevented unwanted entry of all size albumin-derived peptides without hindering the penetration of non-albumin small proteins and peptides. Labile body fluid biomarkers, that would otherwise rapidly degrade, are completely preserved at the time of collection, thus obviating the need for costly freezing or proteinase inhibitors. Low abundant proteins previously invisible to discovery by MS, and previously not measureable by MRM, or clinical immunoassays, can now be quantified with high precision within the linear range of the assay. Our technology is completely innovative, as documented by 3 allowed (2 issued) patents that have been commercially licensed, and 14 publications. No existing technology can solve all of the aforementioned roadblocks, and attain a capture/elution efficiency near 100%. The technology has recently permitted the MS identification of new serum and plasma proteins not listed in the international HUPO database. Under the proposed Aims we will scale up the technology to conduct blind validation of its performance precision, accuracy, improved detection sensitivity, and preservation capacity, in two large (n = 400 sera and n = 74 plasma) well-controlled clinical sera/plasma sample sets (64 analytes). We will extend the technology to urine and sweat to open up these biofluids as a new category for biomarker research, using innovative approaches to solve fundamental problems of volume, perishability, and low protein concentration for these biofluids.

Public Health Relevance

We propose advanced development and validation of novel nanotechnology that will maximize the quality and utility of biologic fluid specimens, and permit the measurement of previously invisible low abundance biomarkers. The nanotechnology is transformative and paradigm-shifting because it immediately and economically solves fundamental roadblocks paralyzing the body fluid cancer biomarker field, permitting the measurement of biomarkers emanating from small (<2 mm) early stage cancers with high precision and accuracy.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Exploratory/Developmental Grants Phase II (R33)
Project #
5R33CA173359-03
Application #
8723137
Study Section
Special Emphasis Panel (ZCA1)
Program Officer
Kagan, Jacob
Project Start
2012-09-20
Project End
2015-08-31
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
Name
George Mason University
Department
Other Basic Sciences
Type
Schools of Arts and Sciences
DUNS #
City
Fairfax
State
VA
Country
United States
Zip Code
22030
Kim, Brianna; Araujo, Robyn; Howard, Marissa et al. (2018) Affinity enrichment for mass spectrometry: improving the yield of low abundance biomarkers. Expert Rev Proteomics 15:353-366
Steinberg, Hannah E; Russo, Paul; Angulo, Noelia et al. (2018) Toward detection of toxoplasmosis from urine in mice using hydro-gel nanoparticles concentration and parallel reaction monitoring mass spectrometry. Nanomedicine 14:461-469
Paris, Luisa; Magni, Ruben; Zaidi, Fatima et al. (2017) Urine lipoarabinomannan glycan in HIV-negative patients with pulmonary tuberculosis correlates with disease severity. Sci Transl Med 9:
Magni, Ruben; Luchini, Alessandra (2017) Application of Hydrogel Nanoparticles for the Capture, Concentration, and Preservation of Low-Abundance Biomarkers. Methods Mol Biol 1606:103-113
Spreafico, Filippo; Bongarzone, Italia; Pizzamiglio, Sara et al. (2017) Proteomic analysis of cerebrospinal fluid from children with central nervous system tumors identifies candidate proteins relating to tumor metastatic spread. Oncotarget 8:46177-46190
Castro-Sesquen, Yagahira E; Gilman, Robert H; Mejia, Carolina et al. (2016) Use of a Chagas Urine Nanoparticle Test (Chunap) to Correlate with Parasitemia Levels in T. cruzi/HIV Co-infected Patients. PLoS Negl Trop Dis 10:e0004407
Harpole, Michael; Davis, Justin; Espina, Virginia (2016) Current state of the art for enhancing urine biomarker discovery. Expert Rev Proteomics 13:609-26
Popova, Taissia G; Teunis, Allison; Magni, Ruben et al. (2015) Chemokine-Releasing Nanoparticles for Manipulation of the Lymph Node Microenvironment. Nanomaterials (Basel) 5:298-320
Zhou, Weidong; Liotta, Lance A; Petricoin, Emanuel F (2015) Cancer metabolism and mass spectrometry-based proteomics. Cancer Lett 356:176-83
Magni, Ruben; Espina, Benjamin H; Shah, Ketul et al. (2015) Application of Nanotrap technology for high sensitivity measurement of urinary outer surface protein A carboxyl-terminus domain in early stage Lyme borreliosis. J Transl Med 13:346

Showing the most recent 10 out of 32 publications