Migration from the primary tumor and through extra-cellular matrix (ECM), intravasation across a cellular barrier, and extravasation and recolonization in a remote site comprise the critical steps of cancer metastasis. Physiologically relevant and well-controlled models that mimic the in vivo tumor microenvironment will enable better understanding of the steps of metastasis and evaluation of potential therapy efficacy. In vivo models have physiological relevancy, yet inherently lack a high level of control. In vitro cancer models provide control, yet lack critical components of the tumor microenvironment. We propose a new technology, a microfluidic metastasis assay (uMA) that replicates essential components of the in vivo tumor microenvironment, including a 3D ECM and vasculature, while providing tight control of biochemical and biophysical parameters. The objective of the proposed work is to extend our previous work under the R21 IMAT program to further develop and evaluate our uMA. Several extensions are proposed including: (i) creating a controlled hypoxic environment, (ii) introducing realistic levels of shear stress in the vascular compartment, (iii) use of tumor spheroids to simulate EMT, and (iv) expanding the range of ECM materials currently being used (Aim 1). Another novel direction is to develop a similar assay to investigate extravasation and recolonization (Aim 2). Finally, to promote use of the uMA by other researchers and for high throughput studies, the platform is multiplexed and methods are developed for manufacturing in plastic (Aim 3). As developed, the uMA has separately addressable communicating regions for cancer cells and other tumor-associated cells seeded in a 3D collagen gel, and for endothelial cells (EC) that line a second channel to simulate the vasculature. The configuration permits migration of cancer cells from tumor spheroids within the gel toward the EC-lined channel. The EC layer mimics the in vivo vascular barrier allowing observation of cancer cell intravasation. A similar device allows cancer cells seeded in the channel to extravasate across an EC layer into ECM. Excellent optical access will permit real time observation of cancer cell migration, intravasation and extravasation. The optical access combined with image processing techniques will quantify cancer cell morphological and migratory parameters, leading to identification of novel invasion metrics that will quantify the metastatic potential of cancer cells. Finally, we will leverage the capability of the uMA for use a a functional screen for anti-metastatic drugs.
These aims will establish the uMA as a useful model for quantitative research of biological mechanisms governing cancer cell metastasis. Therapies that address multiple steps of the metastatic process would clearly benefit from using the uMA as a development platform, as the system provides a well-characterized EC layer under tightly controlled microenvironmental conditions. Future development will enable the uMA to serve as a cancer cell diagnostic device and a high throughput drug development tool.

Public Health Relevance

Cancer spreads and invades through a process called metastasis, often resulting in 90% of cancer patient deaths from solid tumors. The metastasis process is not well understood, since there is a shortage of well- controlled in vitro models that realistically represent the primary tumor microenvironment, its blood supply, and the distant organ environment at the site of the new tumor. This proposal seeks to develop a well-controlled and realistic in vitro tumor microenvironment model to aid cancer metastasis research and eventually provide a platform to more efficiently develop and evaluate cancer therapies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Exploratory/Developmental Grants Phase II (R33)
Project #
5R33CA174550-02
Application #
8660665
Study Section
Special Emphasis Panel (ZCA1-SRLB-J (J1))
Program Officer
Knowlton, John R
Project Start
2013-05-10
Project End
2016-04-30
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
2
Fiscal Year
2014
Total Cost
$357,637
Indirect Cost
$68,784
Name
Massachusetts Institute of Technology
Department
Engineering (All Types)
Type
Schools of Engineering
DUNS #
001425594
City
Cambridge
State
MA
Country
United States
Zip Code
02139
Chen, Michelle B; Whisler, Jordan A; Fröse, Julia et al. (2017) On-chip human microvasculature assay for visualization and quantification of tumor cell extravasation dynamics. Nat Protoc 12:865-880
Li, Ran; Hebert, Jess D; Lee, Tara A et al. (2017) Macrophage-Secreted TNF? and TGF?1 Influence Migration Speed and Persistence of Cancer Cells in 3D Tissue Culture via Independent Pathways. Cancer Res 77:279-290
Zhang, Jitao; Nou, Xuefei A; Kim, Hanyoup et al. (2017) Brillouin flow cytometry for label-free mechanical phenotyping of the nucleus. Lab Chip 17:663-670
Truong, Danh; Puleo, Julieann; Llave, Alison et al. (2016) Breast Cancer Cell Invasion into a Three Dimensional Tumor-Stroma Microenvironment. Sci Rep 6:34094
Boussommier-Calleja, Alexandra; Li, Ran; Chen, Michelle B et al. (2016) Microfluidics: A new tool for modeling cancer-immune interactions. Trends Cancer 2:6-19
Spiegel, Asaf; Brooks, Mary W; Houshyar, Samin et al. (2016) Neutrophils Suppress Intraluminal NK Cell-Mediated Tumor Cell Clearance and Enhance Extravasation of Disseminated Carcinoma Cells. Cancer Discov 6:630-49
Adriani, Giulia; Pavesi, Andrea; Tan, Anthony T et al. (2016) Microfluidic models for adoptive cell-mediated cancer immunotherapies. Drug Discov Today 21:1472-1478
Penny, Hweixian Leong; Sieow, Je Lin; Adriani, Giulia et al. (2016) Warburg metabolism in tumor-conditioned macrophages promotes metastasis in human pancreatic ductal adenocarcinoma. Oncoimmunology 5:e1191731
Chen, Michelle B; Lamar, John M; Li, Ran et al. (2016) Elucidation of the Roles of Tumor Integrin ?1 in the Extravasation Stage of the Metastasis Cascade. Cancer Res 76:2513-24
Kim, Choong; Kasuya, Junichi; Jeon, Jessie et al. (2015) A quantitative microfluidic angiogenesis screen for studying anti-angiogenic therapeutic drugs. Lab Chip 15:301-10

Showing the most recent 10 out of 33 publications