Our recent discovery of conditional reprogramming (CR) to generate cell cultures from human tissues offers new and exciting opportunities for biospecimen repositories. This cell technology makes it possible to rapidly generate cell cultures from surgical specimens and small biopsies, thereby providing an unlimited amount of patient material for genetic and proteomic analysis. However, this technology goes further: it will allow the functional analysis of tumor cells and comparison with the patients'normal cells from the same tissue. In this proposal we will extend and validate aspects of the CR technology and optimize its usage for biobanking. It is important to verify that the genotype and functional responses of CR cells mimics that of the primary tumor and experiments will address these issues using exome sequencing and TruSeq analysis. We will also examine whether the CR cells can predict patient responses to therapies, as we have recently described for a single case in the New England Journal of Medicine. Indeed, we believe that this technology will alter how Pathology departments and tissue repositories freeze patient specimens. Rather than simply quick freezing samples for future molecular analysis, tumor samples will be frozen in cryopreservative, which will additionally permit the generation of cell cultures for diagnostic and therapeutic evaluation.

Public Health Relevance

Earlier this year we published as study showing that it is now possible to establish cell cultures from normal and tumor tissue of cancer patients and to expand them rapidly and efficiently so that they can be used for diagnostic and therapeutic purposes. The intent of this proposal is to optimize and standardize this system so that it can be used by many medical centers for storing and studying a patient's tumor. This method not only provides unlimited material for oncologists to study, but it represents a potential new approach for truly personalized medicine.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Exploratory/Developmental Grants Phase II (R33)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1)
Program Officer
Ossandon, Miguel
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Georgetown University
Schools of Medicine
United States
Zip Code
Berens, E B; Sharif, G M; Schmidt, M O et al. (2016) Keratin-associated protein 5-5 controls cytoskeletal function and cancer cell vascular invasion. Oncogene :
Sharif, G M; Schmidt, M O; Yi, C et al. (2015) Cell growth density modulates cancer cell vascular invasion via Hippo pathway activity and CXCR2 signaling. Oncogene 34:5879-89
Sharif, Ghada M; Wellstein, Anton (2015) Cell density regulates cancer metastasis via the Hippo pathway. Future Oncol 11:3253-60
Vietsch, Eveline E; van Eijck, Casper Hj; Wellstein, Anton (2015) Circulating DNA and Micro-RNA in Patients with Pancreatic Cancer. Pancreat Disord Ther 5:
Bove, Peter F; Dang, Hong; Cheluvaraju, Chaitra et al. (2014) Breaking the in vitro alveolar type II cell proliferation barrier while retaining ion transport properties. Am J Respir Cell Mol Biol 50:767-76
Pollock, Claire B; McDonough, Sara; Wang, Victor S et al. (2014) Strigolactone analogues induce apoptosis through activation of p38 and the stress response pathway in cancer cell lines and in conditionally reprogrammed primary prostate cancer cells. Oncotarget 5:1683-98
Zhang, Weiying; Nandakumar, Nivedita; Shi, Yuhao et al. (2014) Downstream of mutant KRAS, the transcription regulator YAP is essential for neoplastic progression to pancreatic ductal adenocarcinoma. Sci Signal 7:ra42
Zheng, Yun-Ling; Zhang, Fan; Sun, Bing et al. (2014) Telomerase enzymatic component hTERT shortens long telomeres in human cells. Cell Cycle 13:1765-76
Ringer, Lymor; Sirajuddin, Paul; Tricoli, Lucas et al. (2014) The induction of the p53 tumor suppressor protein bridges the apoptotic and autophagic signaling pathways to regulate cell death in prostate cancer cells. Oncotarget 5:10678-91
Saenz, Francisco R; Ory, Virginie; AlOtaiby, Maram et al. (2014) Conditionally reprogrammed normal and transformed mouse mammary epithelial cells display a progenitor-cell-like phenotype. PLoS One 9:e97666

Showing the most recent 10 out of 11 publications