Idiopathic pulmonary arterial hypertension (IPAH) is a progressive and fatal disease. Sustained pulmonary vasoconstriction and vascular remodeling are the major causes for the elevated PVR and PAP in IPAH patients. An increase in cytosolic Ca ([Ca ]cyt) in pulmonary arterial smooth muscle cells (PASMC) is a major 2+ 2+ trigger for pulmonary vasoconstriction and for pulmonary vascular remodeling due to its stimulatory effect on PASMC proliferation and migration. Abnormally enhanced Ca2+ entry in PASMC because of upregulated expression of membrane receptors (e.g., CaSR) and Ca2+ channels (e.g., TRPC6/C3) contributes to the development and progression of PAH. Downregulation of voltage-gated K+ (Kv) channel expression and decrease in Kv currents (IK(V)) in PASMC contribute to a) increasing PASMC contraction, proliferation and migration by inducing membrane depolarization that opens voltage-dependent Ca2+ channels and raises [Ca ]cyt and b) inhibiting PASMC apoptosis by attenuating apoptotic volume decrease (AVD) and maintaining 2+ high [K ]cyt to inhibit caspases. Enhanced PASMC proliferation and inhibited PASMC apoptosis both contribute + to pulmonary vascular wall thickening. Our data show that selectively increased miRNAs are involved in posttranscriptionally downregulating Kv channels to stimulate PASMC proliferation and inhibit PASMC apoptosis in IPAH patients. Ca2+-sensing receptor (CaSR), a G protein-coupled receptor that can be activated by extracellular Ca2+, is upregulated in IPAH-PASMC compared to normal PASMC. Activation of CaSR in IPAH-PASMC induces receptor-operated Ca entry (ROCE) via diacylglycerol (DAG), while IP3-mediate active 2+ depletion of Ca2+ from the SR results in store-operated Ca2+ entry (SOCE). Extracellular Ca2+-induced CaSR activation also inhibits Kv channels and activate other signal transduction pathways to induce cell proliferation. The overall goal of this research program is to continue to investigate: i) the molecular and cellular mechanisms involved in the posttranscriptional downregulation of Kv channels and other K+ channels by miRNAs that are enhanced in PASMC from IPAH patients; ii) the genetic and molecular mechanisms responsible for the transcriptional upregulation of CaSR and receptor-operated (ROC) and store-operated (SOC) Ca2+ channels (e.g., TRPC3/C6, TRPV1, Orai1/2 and STIM1/2) in PASMC from IPAH patients; iii) the cellular and pathophysiological mechanisms involved in the CaSR-mediated functional activation of TRPC/Orai channels (and STIM1/2 oligomerization and translocation) and functional inhibition of Kv channels in PASMC from IPAH patients; and iv) the potential targets involved in the pathogenic Ca2+ signaling that can be used to develop novel therapy or combination therapy for PAH. Our laboratory has extensive research and technical experience in studying pathogenic mechanisms of IPAH and pulmonary hypertension associated with hypoxic lung disease. The forthcoming results from these studies will provide highly impactful insights into developing novel therapies for IPAH and other forms of pulmonary hypertension.

Public Health Relevance

Idiopathic pulmonary arterial hypertension (IPAH) is a rare and fatal disease that predominantly affects young women. Abnormalities in pulmonary arteries, the blood vessels in the lungs, have been shown to relate to the elevated blood pressure in the lungs. This study is designed to determine the role of receptors and ion channels, proteins on cell membrane that mediate cell growth and mobility in the cellular processes that lead to the high blood pressure in the lungs in patients with this devastating disease, and to reveal potential novel targets for therapeutic approaches to treat IPAH.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Unknown (R35)
Project #
Application #
Study Section
Special Emphasis Panel (ZHL1)
Program Officer
Xiao, Lei
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Arizona
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Vanderpool, Rebecca R; Desai, Ankit A; Knapp, Shannon M et al. (2017) How prostacyclin therapy improves right ventricular function in pulmonary arterial hypertension. Eur Respir J 50:
Chen, Jiwang; Sysol, Justin R; Singla, Sunit et al. (2017) Nicotinamide Phosphoribosyltransferase Promotes Pulmonary Vascular Remodeling and Is a Therapeutic Target in Pulmonary Arterial Hypertension. Circulation 135:1532-1546
Vanderpool, Rebecca R; Tang, Haiyang; Rischard, Franz et al. (2017) Is p38 MAPK a Dark Force in Right Ventricular Hypertrophy and Failure in Pulmonary Arterial Hypertension? Am J Respir Cell Mol Biol 57:506-508
Yuan, Jason X-J; Morrell, Nicholas W; Stenmark, Kurt R et al. (2017) The Pulmonary Vascular Research Institute celebrates its first decade. Pulm Circ 7:283-284
Song, Shanshan; Ayon, Ramon J; Yamamura, Aya et al. (2017) Capsaicin-induced Ca(2+) signaling is enhanced via upregulated TRPV1 channels in pulmonary artery smooth muscle cells from patients with idiopathic PAH. Am J Physiol Lung Cell Mol Physiol 312:L309-L325
Wang, Ting; Gross, Christine; Desai, Ankit A et al. (2017) Endothelial cell signaling and ventilator-induced lung injury: molecular mechanisms, genomic analyses, and therapeutic targets. Am J Physiol Lung Cell Mol Physiol 312:L452-L476
Tang, Haiyang; Babicheva, Aleksandra; McDermott, Kimberly M et al. (2017) Endothelial HIF-2? Contributes to Severe Pulmonary Hypertension by Inducing Endothelial-to-Mesenchymal Transition. Am J Physiol Lung Cell Mol Physiol :ajplung000962017
Kumar, Sanjiv; Sun, Xutong; Noonepalle, Satish Kumar et al. (2017) Hyper-activation of pp60Src limits nitric oxide signaling by increasing asymmetric dimethylarginine levels during acute lung injury. Free Radic Biol Med 102:217-228
Wu, Kang; Zhang, Qian; Wu, Xiongting et al. (2017) Chloroquine is a potent pulmonary vasodilator that attenuates hypoxia-induced pulmonary hypertension. Br J Pharmacol 174:4155-4172
Tang, Haiyang; Vanderpool, Rebecca R; Wang, Jian et al. (2017) Targeting L-arginine-nitric oxide-cGMP pathway in pulmonary arterial hypertension. Pulm Circ 7:569-571