Ethanol (EtOH) is abused for both its positive and negative reinforcing effects. Although much is known about the neurobiological substrates underlying EtOH's positive reinforcing effects, relatively little is known about the neurophysiological mechanisms and brain regions that contribute to EtOH's negative reinforcing properties. In this proposal, we take advantage of a genetically engineered mouse line that exhibits increased sensitivity to some of EtOH's negative reinforcing effects. We previously demonstrated that these GABAA receptor alpha1 subunit gene knockin mice exhibit an increase in several measures of acute EtOH-induced anxiolysis and marked increases in EtOH withdrawal seizures. The experiments proposed will integrate neurobiological and behavioral approaches, in global and brain region specific knockin mice, to dissect the mechanisms through which chronic EtOH exposure and withdrawal lead to functional deficits in GABAergic synaptic inhibition.
These aims will address the hypothesis that EtOH-induced GABAergic synaptic adaptation in the hippocampus and basolateral amygdala lead to brain-region specific alterations in anxiety-like behavior, withdrawal seizures, and dependence-induced escalations in EtOH drinking. On a more basic level, EtOH alters gene expression. Undoubtedly such EtOH- induced neuroadaptations are also intimately involved in the long-term effects of EtOH on the brain. This is especially true for the transition from recreational drinking to EtOH abuse and alcoholism;the brains of alcoholics have a transcriptome that differs from non-alcoholics. While numerous studies have catalogued changes in EtOH-induced gene expression, a very basic and profound question has not yet been addressed. What is the mechanism by which EtOH reprograms the brain transcriptome? We hypothesize that EtOH-induced epigenetic changes are the fundamental mechanism responsible for this important effect of EtOH. Thus, the final aim will investigate the epigenetic effects of EtOH.

Public Health Relevance

Relevance EtOH addiction remains an imposing medical and socio-economic concern for our society. Elucidating the molecular and neurophysiological substrates that underlie EtOH addiction will facilitate the development of more effective treatment strategies for alcoholism.

Agency
National Institute of Health (NIH)
Institute
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
Type
Method to Extend Research in Time (MERIT) Award (R37)
Project #
5R37AA010422-16
Application #
8270520
Study Section
Special Emphasis Panel (ZRG1-IFCN-C (03))
Program Officer
Reilly, Matthew
Project Start
1995-08-01
Project End
2015-04-30
Budget Start
2012-05-01
Budget End
2013-04-30
Support Year
16
Fiscal Year
2012
Total Cost
$429,671
Indirect Cost
$80,425
Name
University of Pittsburgh
Department
Anesthesiology
Type
Schools of Medicine
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Zimmerman, Mark W; McQueeney, Kelley E; Isenberg, Jeffrey S et al. (2014) Protein-tyrosine phosphatase 4A3 (PTP4A3) promotes vascular endothelial growth factor signaling and enables endothelial cell motility. J Biol Chem 289:5904-13
Finegersh, Andrey; Homanics, Gregg E (2014) Acute ethanol alters multiple histone modifications at model gene promoters in the cerebral cortex. Alcohol Clin Exp Res 38:1865-73
Xiong, Wei; Chen, Shao-Rui; He, Liming et al. (2014) Presynaptic glycine receptors as a potential therapeutic target for hyperekplexia disease. Nat Neurosci 17:232-9
Butler, Tracy R; Carter, Eugenia; Weiner, Jeffrey L (2014) Adolescent social isolation does not lead to persistent increases in anxiety- like behavior or ethanol intake in female long-evans rats. Alcohol Clin Exp Res 38:2199-207
Cramer, Julie M; Zimmerman, Mark W; Thompson, Tim et al. (2014) Deletion of Ptp4a3 reduces clonogenicity and tumor-initiation ability of colitis-associated cancer cells in mice. Stem Cell Res 13:164-71
Finegersh, Andrey; Homanics, Gregg E (2014) Paternal alcohol exposure reduces alcohol drinking and increases behavioral sensitivity to alcohol selectively in male offspring. PLoS One 9:e99078
Iyer, Sangeetha V; Chandra, Dave; Homanics, Gregg E (2014) GABAA-R *4 subunits are required for the low dose locomotor stimulatory effect of alphaxalone, but not for several other behavioral responses to alphaxalone, etomidate or propofol. Neurochem Res 39:1048-56
Skelly, Mary J; Weiner, Jeff L (2014) Chronic treatment with prazosin or duloxetine lessens concurrent anxiety-like behavior and alcohol intake: evidence of disrupted noradrenergic signaling in anxiety-related alcohol use. Brain Behav 4:468-83
Peng, Zechun; Zhang, Nianhui; Chandra, Dave et al. (2014) Altered localization of the ýý subunit of the GABAA receptor in the thalamus of *4 subunit knockout mice. Neurochem Res 39:1104-17
Butler, T R; Chappell, A M; Weiner, J L (2014) Effect of *3 adrenoceptor activation in the basolateral amygdala on ethanol seeking behaviors. Psychopharmacology (Berl) 231:293-303

Showing the most recent 10 out of 26 publications