Lewy body disease (LBD) is a group of disorders characterized by alpha-synuclein (alpha-syn) accumulation and parkinsonism. During the previous period, the objective was to understand the mechanisms by which (3- synuclein ((3-syn) a close homologue to alpha-syn blocks a-syn aggregation and might have a role in the treatment of degenerative disorders such as Alzheimer's disease (AD) and LBD. Both p-syn and antibodies against alpha-syn target alpha-syn aggregates for clearance probably via autophagy, a process of degradation and recycling of cellular constituents. Alterations in autophagy might play a role in the pathogenesis of AD and LBD, and might represent a target for treatment development. The objectives of this renewal application are: i) to gain new knowledge as to the involvement of the autophagy pathways in the mechanisms of neurodegeneration in LBD, ii) to develop new experimental therapies for LBD by targeting the autophagy pathways and iii) to better understand the involvement of the autophagy pathways in the mechanisms of asyn clearance mediated by immunotherapy. We propose the following aims:
AIM 1. Characterize in vivo the contribution of selected molecular components of the autophagy pathway to the pathogenesis of LBD.
AIM 2. Investigate in in vivo models of alpha-synucleinopathy the therapeutic and neuroprotective effects of activators of the autophagy pathway.
AIM 3. Better understand the cellular mechanisms involved in the clearance of toxic alpha-syn aggregates via specific antibodies.
AIM 4. Determine in immunized animals, the contribution of autophagy to the molecular mechanisms involved in alpha-syn clearance. alpha-Syn transgenic mice will be crossed with mice either deficient in or transgenic for components of the autophagy pathway (e.g. Beclinl, LAMP2, mTor). Mice will be treated with stimulators of autophagy (rapamycin, immunotherapy) and analyzed behaviorally, biochemically and neuropathologically. Studies will be complemented with primary neuronal cultures treated with lentiviral vectors and analyzed for markers of autophagy. Better understanding the autophagic pathways involved in alpha-syn clearance is of central importance toward elucidating the pathogenesis of LBD and developing new treatments for these conditions. Thus, enhancing autophagy and lysosomal degradation of alpha-syn may represent a promising therapeutical strategy for the treatment not only for LBD but also for AD.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Method to Extend Research in Time (MERIT) Award (R37)
Project #
Application #
Study Section
Special Emphasis Panel (NSS)
Program Officer
Buckholtz, Neil
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Diego
Schools of Medicine
La Jolla
United States
Zip Code
Adamowicz, David H; Roy, Subhojit; Salmon, David P et al. (2017) Hippocampal ?-Synuclein in Dementia with Lewy Bodies Contributes to Memory Impairment and Is Consistent with Spread of Pathology. J Neurosci 37:1675-1684
Valera, Elvira; Spencer, Brian; Mott, Jennifer et al. (2017) MicroRNA-101 Modulates Autophagy and Oligodendroglial Alpha-Synuclein Accumulation in Multiple System Atrophy. Front Mol Neurosci 10:329
Valera, Elvira; Spencer, Brian; Fields, Jerel A et al. (2017) Combination of alpha-synuclein immunotherapy with anti-inflammatory treatment in a transgenic mouse model of multiple system atrophy. Acta Neuropathol Commun 5:2
Ihse, Elisabet; Yamakado, Hodaka; van Wijk, Xander M et al. (2017) Cellular internalization of alpha-synuclein aggregates by cell surface heparan sulfate depends on aggregate conformation and cell type. Sci Rep 7:9008
Ngolab, Jennifer; Trinh, Ivy; Rockenstein, Edward et al. (2017) Brain-derived exosomes from dementia with Lewy bodies propagate ?-synuclein pathology. Acta Neuropathol Commun 5:46
Kratter, Ian H; Zahed, Hengameh; Lau, Alice et al. (2016) Serine 421 regulates mutant huntingtin toxicity and clearance in mice. J Clin Invest 126:3585-97
Wrasidlo, Wolfgang; Tsigelny, Igor F; Price, Diana L et al. (2016) A de novo compound targeting ?-synuclein improves deficits in models of Parkinson's disease. Brain 139:3217-3236
Kim, Eunhee; Wang, Bin; Sastry, Namratha et al. (2016) NEDD4-mediated HSF1 degradation underlies ?-synucleinopathy. Hum Mol Genet 25:211-22
Gillman, Alan L; Lee, Joon; Ramachandran, Srinivasan et al. (2016) Small molecule NPT-440-1 inhibits ionic flux through A?1-42 pores: Implications for Alzheimer's disease therapeutics. Nanomedicine 12:2331-2340
Fields, Jerel Adam; Serger, Elisabeth; Campos, Sofia et al. (2016) HIV alters neuronal mitochondrial fission/fusion in the brain during HIV-associated neurocognitive disorders. Neurobiol Dis 86:154-69

Showing the most recent 10 out of 194 publications